Skip to content

[Usage]: Phi-4-multimodal-instruct activate LoRA module but get mangled text output #15440

@Luffy966

Description

@Luffy966

Your current environment

The output of `python collect_env.py`
INFO 03-24 14:46:21 [__init__.py:256] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.6.0+cu118
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.23.0
Libc version: glibc-2.31

Python version: 3.12.9 | packaged by Anaconda, Inc. | (main, Feb  6 2025, 18:56:27) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.0-162-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA GeForce RTX 4090
GPU 1: NVIDIA GeForce RTX 4090
GPU 2: NVIDIA GeForce RTX 4090
GPU 3: NVIDIA GeForce RTX 4090
GPU 4: NVIDIA GeForce RTX 4090
GPU 5: NVIDIA GeForce RTX 4090
GPU 6: NVIDIA GeForce RTX 4090
GPU 7: NVIDIA GeForce RTX 4090

Nvidia driver version: 535.104.05
cuDNN version: Probably one of the following:
/usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn.so.8.4.0
/usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.4.0
/usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.4.0
/usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.4.0
/usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.4.0
/usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.4.0
/usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.4.0
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn.so.8.9.0
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.0
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.0
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.0
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.0
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.0
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.0
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn.so.8.8.0
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.8.0
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.8.0
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.8.0
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.8.0
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.8.0
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.8.0
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn.so.8.9.2
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.2
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.2
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.2
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.2
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.2
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.2
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Byte Order:                         Little Endian
Address sizes:                      52 bits physical, 57 bits virtual
CPU(s):                             128
On-line CPU(s) list:                0-127
Thread(s) per core:                 2
Core(s) per socket:                 32
Socket(s):                          2
NUMA node(s):                       2
Vendor ID:                          GenuineIntel
CPU family:                         6
Model:                              106
Model name:                         Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz
Stepping:                           6
Frequency boost:                    enabled
CPU MHz:                            1354.195
CPU max MHz:                        2001.0000
CPU min MHz:                        800.0000
BogoMIPS:                           4000.00
Virtualization:                     VT-x
L1d cache:                          3 MiB
L1i cache:                          2 MiB
L2 cache:                           80 MiB
L3 cache:                           96 MiB
NUMA node0 CPU(s):                  0-31,64-95
NUMA node1 CPU(s):                  32-63,96-127
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed:             Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear pconfig flush_l1d arch_capabilities

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu11==11.11.3.6
[pip3] nvidia-cuda-cupti-cu11==11.8.87
[pip3] nvidia-cuda-nvrtc-cu11==11.8.89
[pip3] nvidia-cuda-runtime-cu11==11.8.89
[pip3] nvidia-cudnn-cu11==9.1.0.70
[pip3] nvidia-cufft-cu11==10.9.0.58
[pip3] nvidia-curand-cu11==10.3.0.86
[pip3] nvidia-cusolver-cu11==11.4.1.48
[pip3] nvidia-cusparse-cu11==11.7.5.86
[pip3] nvidia-nccl-cu11==2.21.5
[pip3] nvidia-nvtx-cu11==11.8.86
[pip3] pyzmq==26.3.0
[pip3] torch==2.6.0+cu118
[pip3] torchaudio==2.6.0+cu118
[pip3] torchvision==0.21.0+cu118
[pip3] transformers==4.50.0
[pip3] triton==3.2.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu11        11.11.3.6                pypi_0    pypi
[conda] nvidia-cuda-cupti-cu11    11.8.87                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu11    11.8.89                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu11  11.8.89                  pypi_0    pypi
[conda] nvidia-cudnn-cu11         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu11         10.9.0.58                pypi_0    pypi
[conda] nvidia-curand-cu11        10.3.0.86                pypi_0    pypi
[conda] nvidia-cusolver-cu11      11.4.1.48                pypi_0    pypi
[conda] nvidia-cusparse-cu11      11.7.5.86                pypi_0    pypi
[conda] nvidia-nccl-cu11          2.21.5                   pypi_0    pypi
[conda] nvidia-nvtx-cu11          11.8.86                  pypi_0    pypi
[conda] pyzmq                     26.3.0                   pypi_0    pypi
[conda] torch                     2.6.0+cu118              pypi_0    pypi
[conda] torchaudio                2.6.0+cu118              pypi_0    pypi
[conda] torchvision               0.21.0+cu118             pypi_0    pypi
[conda] transformers              4.50.0                   pypi_0    pypi
[conda] triton                    3.2.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
�[4mGPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	NIC0	NIC1	CPU Affinity	NUMA Affinity	GPU NUMA ID�[0m
GPU0	 X 	PIX	PXB	PXB	SYS	SYS	SYS	SYS	PXB	PXB	0-31,64-95	0		N/A
GPU1	PIX	 X 	PXB	PXB	SYS	SYS	SYS	SYS	PXB	PXB	0-31,64-95	0		N/A
GPU2	PXB	PXB	 X 	PIX	SYS	SYS	SYS	SYS	PXB	PXB	0-31,64-95	0		N/A
GPU3	PXB	PXB	PIX	 X 	SYS	SYS	SYS	SYS	PXB	PXB	0-31,64-95	0		N/A
GPU4	SYS	SYS	SYS	SYS	 X 	PXB	PXB	PXB	SYS	SYS	32-63,96-127	1		N/A
GPU5	SYS	SYS	SYS	SYS	PXB	 X 	PXB	PXB	SYS	SYS	32-63,96-127	1		N/A
GPU6	SYS	SYS	SYS	SYS	PXB	PXB	 X 	PIX	SYS	SYS	32-63,96-127	1		N/A
GPU7	SYS	SYS	SYS	SYS	PXB	PXB	PIX	 X 	SYS	SYS	32-63,96-127	1		N/A
NIC0	PXB	PXB	PXB	PXB	SYS	SYS	SYS	SYS	 X 	PIX				
NIC1	PXB	PXB	PXB	PXB	SYS	SYS	SYS	SYS	PIX	 X 				

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1

NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

How would you like to use vllm

🐛 Describe the bug

I deployed Phi-4-multimodal-instruct by using the this cmd and activating its audio function only:

NCCL_CUMEM_ENABLE=0 NCCL_DEBUG=TRACE CUDA_LAUNCH_BLOCKING=1 CUDA_VISIBLE_DEVICES=1,5 vllm serve /my/path/to/models/Huggingface_download/Phi-4-multimodal-instruct --task generate --trust-remote-code --limit-mm-per-prompt audio=10 --tensor-parallel-size 2 --gpu-memory-utilization 0.99 --port 8007 --max_num_seqs 1 --enable_lora --max_lora_rank 320 --lora-modules speech=/my/path/to/models/Huggingface_download/Phi-4-multimodal-instruct/speech-lora

Then I prompt it in Chinese with a "audio+text -> text" task. And I found out the output of model is all mangled text.

But when I disabled lora and redeployed it:

NCCL_CUMEM_ENABLE=0 NCCL_DEBUG=TRACE CUDA_LAUNCH_BLOCKING=1 CUDA_VISIBLE_DEVICES=1,5 vllm serve /my/path/to/models/Huggingface_download/Phi-4-multimodal-instruct --task generate --trust-remote-code --limit-mm-per-prompt audio=10 --tensor-parallel-size 2 --gpu-memory-utilization 0.99 --port 8007 --max_num_seqs 1

I found everything ran well and it correctly answered me in Chinese, and it's even faster.

Is it correct not loading the lora modules or loading only the speech one when using Phi-4-multimodal-instruct? How should I load lora modules if they're necessary?

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    staleOver 90 days of inactivityusageHow to use vllm

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions