-
-
Notifications
You must be signed in to change notification settings - Fork 674
Closed
Description
----------------------------------------------------------------------
| SAGE Version 3.0.6, Release Date: 2008-07-30 |
| Type notebook() for the GUI, and license() for information. |
----------------------------------------------------------------------
sage: x = var('x')
sage: integrate(x^2.7 * e^(-2.4*x), x, 0, 3).n()
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
/home/drake/sage-3.0.6.final/<ipython console> in <module>()
/home/was/s/local/lib/python2.5/site-packages/sage/calculus/calculus.py in numerical_approx(self, prec, digits)
1266 except TypeError:
1267 # try to return a complex result
-> 1268 approx = self._complex_mpfr_field_(ComplexField(prec))
1269
1270 return approx
/home/was/s/local/lib/python2.5/site-packages/sage/calculus/calculus.py in _complex_mpfr_field_(self, field)
1419
1420 def _complex_mpfr_field_(self, field):
-> 1421 raise TypeError
1422
1423 def _complex_double_(self, C):
TypeError:
sage:
Oddly, the plot
function has no difficulty, so some part of Sage can numerically evaluate the function:
plot(x^2.7 * e^(-2.4*x), x, 0, 3)
works fine.
Some values for the exponents do work -- it seems like the exponent of x
needs to be an integer or half-integer:
(2.7, -2.4): this is the above example
(27/10, -2.4): same error as above
(1.5, -2.4): works
(1.6, -2.4): same error as above
(1.6, -2.0): same error as above
(1.0, -2.4): works
(5.5, -2.4): works
Component: calculus
Keywords: integration integral calculus symbolic numerical
Author: Golam Mortuza Hossain, Burcin Erocal
Reviewer: Dan Drake
Merged: sage-4.4.alpha0
Issue created by migration from https://trac.sagemath.org/ticket/3863