-
-
Notifications
You must be signed in to change notification settings - Fork 673
Closed
Description
sage: P.<q> = LaurentPolynomialRing(QQ)
sage: qi = q^(-1)
sage: qi in P
False
sage: q in P
True
sage: P(qi)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
/home/mike/<ipython console> in <module>()
/opt/sage/local/lib/python2.5/site-packages/sage/rings/polynomial/laurent_polynomial_ring.py in __call__(self, x)
679 sage: L(1/2)
680 1/2
681 """
--> 682 return LaurentPolynomial_mpair(self, x)
683
/home/mike/laurent_polynomial.pyx in sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair.__init__ (sage/rings/polynomial/laurent_polynomial.c:1889)()
/home/mike/multi_polynomial_libsingular.pyx in sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular.__call__ (sage/rings/polynomial/multi_polynomial_libsingular.cpp:5984)()
/opt/sage/local/lib/python2.5/site-packages/sage/rings/rational_field.py in __call__(self, x, base)
216 return x
217
--> 218 return sage.rings.rational.Rational(x, base)
219
220 def construction(self):
/home/mike/rational.pyx in sage.rings.rational.Rational.__init__ (sage/rings/rational.c:3321)()
/home/mike/rational.pyx in sage.rings.rational.Rational.__set_value (sage/rings/rational.c:4494)()
TypeError: Unable to coerce q^-1 (<type 'sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair'>) to Rational
Component: commutative algebra
Author: Mike Hansen
Reviewer: Sebastian Pancratz
Merged: sage-4.3.2.alpha0
Issue created by migration from https://trac.sagemath.org/ticket/3617