Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 23 additions & 31 deletions winml/test/api/LearningModelSessionAPITest.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -437,7 +437,7 @@ static void WindowFunction(
auto double_data_type = TensorInt64Bit::CreateFromArray({}, {11});

auto window_operator =
Operator(window_operator_name, MS_EXPERIMENTAL_DOMAIN)
Operator(window_operator_name)
.SetInput(L"size", L"Input")
.SetOutput(L"output", L"Output");

Expand All @@ -446,7 +446,7 @@ static void WindowFunction(
}

auto model =
LearningModelBuilder::Create(13)
LearningModelBuilder::Create(17)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Input", TensorKind::Int64, scalar_shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output", kind, output_shape))
.Operators().Add(window_operator)
Expand Down Expand Up @@ -534,7 +534,7 @@ static void DiscreteFourierTransform_2D() {
printf("\n Is Onesided: false");

auto builder =
LearningModelBuilder::Create(13)
LearningModelBuilder::Create(17)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Input.Signal", TensorKind::Float, input_shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.Spectra", TensorKind::Float, output_shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.Inverse", TensorKind::Float, output_shape))
Expand All @@ -543,21 +543,23 @@ static void DiscreteFourierTransform_2D() {
.SetInput(L"data", L"Input.Signal")
.SetConstant(L"shape", TensorInt64Bit::CreateFromArray({4}, {INT64(1), INT64(height), INT64(width), INT64(1) }))
.SetOutput(L"reshaped", L"reshaped_output"))
.Operators().Add(Operator(L"DFT", MS_EXPERIMENTAL_DOMAIN)
.Operators().Add(Operator(L"DFT")
.SetInput(L"input", L"reshaped_output")
.SetAttribute(L"axis", TensorInt64Bit::CreateFromArray({}, {INT64(1)}))
.SetOutput(L"output", L"DFT.Output.1"))
.Operators().Add(Operator(L"DFT", MS_EXPERIMENTAL_DOMAIN)
.Operators().Add(Operator(L"DFT")
.SetInput(L"input", L"DFT.Output.1")
.SetAttribute(L"axis", TensorInt64Bit::CreateFromArray({}, {INT64(2)}))
.SetOutput(L"output", L"DFT.Output.2"))
.Operators().Add(Operator(L"IDFT", MS_EXPERIMENTAL_DOMAIN)
.Operators().Add(Operator(L"DFT")
.SetInput(L"input", L"DFT.Output.2")
.SetAttribute(L"axis", TensorInt64Bit::CreateFromArray({}, {INT64(2)}))
.SetAttribute(L"inverse", TensorInt64Bit::CreateFromArray({}, {INT64(1)}))
.SetOutput(L"output", L"IDFT.Output.1"))
.Operators().Add(Operator(L"IDFT", MS_EXPERIMENTAL_DOMAIN)
.Operators().Add(Operator(L"DFT")
.SetInput(L"input", L"IDFT.Output.1")
.SetAttribute(L"axis", TensorInt64Bit::CreateFromArray({}, {INT64(1)}))
.SetAttribute(L"inverse", TensorInt64Bit::CreateFromArray({}, {INT64(1)}))
.SetOutput(L"output", L"IDFT.Output.2"))
.Operators().Add(Operator(L"ReduceSumSquare")
.SetInput(L"data", L"DFT.Output.2")
Expand Down Expand Up @@ -664,11 +666,11 @@ static void DiscreteFourierTransform(
printf("\n Is Onesided: %s", is_onesided ? "true" : "false");

auto model =
LearningModelBuilder::Create(13)
LearningModelBuilder::Create(17)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Input.Signal", TensorKind::Float, input_shape))
.Inputs().AddConstant(L"Input.DFTLength", TensorInt64Bit::CreateFromArray({}, {INT64(dft_length)}))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.Spectra", TensorKind::Float, output_shape))
.Operators().Add(Operator(L"DFT", MS_EXPERIMENTAL_DOMAIN)
.Operators().Add(Operator(L"DFT")
.SetInput(L"input", L"Input.Signal")
.SetInput(L"dft_length", L"Input.DFTLength")
.SetAttribute(L"axis", TensorInt64Bit::CreateFromArray({}, {INT64(axis)}))
Expand Down Expand Up @@ -768,14 +770,14 @@ static void STFT(size_t batch_size, size_t signal_size, size_t dft_size,
auto dft_length = TensorInt64Bit::CreateFromArray({}, {INT64(dft_size)});

auto model =
LearningModelBuilder::Create(13)
LearningModelBuilder::Create(17)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Input.TimeSignal", TensorKind::Float, input_shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.STFT", TensorKind::Float, output_shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.HannWindow", TensorKind::Float, {INT64(dft_size)}))
.Operators().Add(Operator(L"HannWindow", MS_EXPERIMENTAL_DOMAIN)
.Operators().Add(Operator(L"HannWindow")
.SetConstant(L"size", dft_length)
.SetOutput(L"output", L"Output.HannWindow"))
.Operators().Add(Operator(L"STFT", MS_EXPERIMENTAL_DOMAIN)
.Operators().Add(Operator(L"STFT")
.SetAttribute(L"onesided", TensorInt64Bit::CreateFromArray({}, {INT64(is_onesided)}))
.SetInput(L"signal", L"Input.TimeSignal")
.SetInput(L"window", L"Output.HannWindow")
Expand Down Expand Up @@ -833,9 +835,9 @@ static void ModelBuilding_MelWeightMatrix() {
#if !defined(BUILD_INBOX) && defined(BUILD_MS_EXPERIMENTAL_OPS)
std::vector<int64_t> output_shape = {INT64(9), INT64(8)};
auto builder =
LearningModelBuilder::Create(13)
LearningModelBuilder::Create(17)
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.MelWeightMatrix", TensorKind::Float, output_shape))
.Operators().Add(Operator(L"MelWeightMatrix", MS_EXPERIMENTAL_DOMAIN)
.Operators().Add(Operator(L"MelWeightMatrix")
.SetConstant(L"num_mel_bins", TensorInt64Bit::CreateFromArray({}, {INT64(8)}))
.SetConstant(L"dft_length", TensorInt64Bit::CreateFromArray({}, {INT64(16)}))
.SetConstant(L"sample_rate", TensorInt64Bit::CreateFromArray({}, {INT64(8192)}))
Expand Down Expand Up @@ -875,13 +877,13 @@ static void MelSpectrogramOnThreeToneSignal(
std::vector<int64_t> mel_spectrogram_shape = {INT64(batch_size), 1, INT64(n_dfts), INT64(n_mel_bins)};

auto builder =
LearningModelBuilder::Create(13)
LearningModelBuilder::Create(17)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Input.TimeSignal", TensorKind::Float, signal_shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.MelSpectrogram", TensorKind::Float, mel_spectrogram_shape))
.Operators().Add(Operator(L"HannWindow", MS_EXPERIMENTAL_DOMAIN)
.Operators().Add(Operator(L"HannWindow")
.SetConstant(L"size", TensorInt64Bit::CreateFromArray({}, {INT64(window_size)}))
.SetOutput(L"output", L"hann_window"))
.Operators().Add(Operator(L"STFT", MS_EXPERIMENTAL_DOMAIN)
.Operators().Add(Operator(L"STFT")
.SetName(L"STFT_NAMED_NODE")
.SetInput(L"signal", L"Input.TimeSignal")
.SetInput(L"window", L"hann_window")
Expand All @@ -897,7 +899,7 @@ static void MelSpectrogramOnThreeToneSignal(
.SetInput(L"A", L"magnitude_squared")
.SetConstant(L"B", TensorFloat::CreateFromArray({}, {static_cast<float>(dft_size)}))
.SetOutput(L"C", L"power_frames"))
.Operators().Add(Operator(L"MelWeightMatrix", MS_EXPERIMENTAL_DOMAIN)
.Operators().Add(Operator(L"MelWeightMatrix")
.SetConstant(L"num_mel_bins", TensorInt64Bit::CreateFromArray({}, {INT64(n_mel_bins)}))
.SetConstant(L"dft_length", TensorInt64Bit::CreateFromArray({}, {INT64(dft_size)}))
.SetConstant(L"sample_rate", TensorInt64Bit::CreateFromArray({}, {INT64(sampling_rate)}))
Expand Down Expand Up @@ -1115,16 +1117,6 @@ static void ModelBuilding_ConstantMatmul() {

static void ModelBuilding_DiscreteFourierTransform() {
#if !defined(BUILD_INBOX) && defined(BUILD_MS_EXPERIMENTAL_OPS)
std::vector<float> legacy_real_input =
{
1.00f, 2.00, 3.00f, 4.00f, 5.00f, 6.00f, 7.00f, 8.00f,
};

std::vector<std::complex<float>> legacy_real_expected_axis_0_two_sided = {
{36.000f, 0.000f}, {-4.000f, 9.657f}, {-4.000f, 4.000f}, {-4.000f, 1.657f}, {-4.000f, 0.000f}, {-4.000f, -1.657f}, {-4.000f, -4.000f}, {-4.000f, -9.657f},
};
DiscreteFourierTransform(legacy_real_input, {1, 8}, legacy_real_expected_axis_0_two_sided, 1, 8, false /*onesided*/);

std::vector<float> real_input =
{
1.00f, 2.00, 3.00f, 4.00f, 5.00f, 6.00f, 7.00f, 8.00f,
Expand Down Expand Up @@ -1263,15 +1255,15 @@ static void DiscreteFourierTransformInverse(size_t axis) {
std::vector<int64_t> output_shape = {2, 5, 8, 2};

auto model =
LearningModelBuilder::Create(13)
LearningModelBuilder::Create(17)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Input.TimeSignal", TensorKind::Float, shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.Spectra", TensorKind::Float, output_shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.Inverse", TensorKind::Float, output_shape))
.Operators().Add(Operator(L"DFT", MS_EXPERIMENTAL_DOMAIN)
.Operators().Add(Operator(L"DFT")
.SetInput(L"input", L"Input.TimeSignal")
.SetAttribute(L"axis", TensorInt64Bit::CreateFromArray({}, {INT64(axis)}))
.SetOutput(L"output", L"Output.Spectra"))
.Operators().Add(Operator(L"DFT", MS_EXPERIMENTAL_DOMAIN)
.Operators().Add(Operator(L"DFT")
.SetInput(L"input", L"Output.Spectra")
.SetAttribute(L"axis", TensorInt64Bit::CreateFromArray({}, {INT64(axis)}))
.SetAttribute(L"inverse", TensorInt64Bit::CreateFromArray({}, {INT64(1)}))
Expand Down