Skip to content

Conversation

letonghan
Copy link
Contributor

@letonghan letonghan commented Sep 25, 2025

User description

Type of Change

feature or bug fix or documentation or validation or others
API changed or not

Description

detail description

Expected Behavior & Potential Risk

the expected behavior that triggered by this PR

How has this PR been tested?

how to reproduce the test (including hardware information)

Dependency Change?

any library dependency introduced or removed


PR Type

Enhancement


Description

  • Refactored dataloader creation into a function

  • Added error handling for missing dataset and model files

  • Improved code readability and added comments


Diagram Walkthrough

flowchart LR
  A["Refactor dataloader creation"] -- "into function" --> B["Add error handling"]
  B -- "for files" --> C["Improve readability"]
Loading

File Walkthrough

Relevant files
Enhancement
test.py
Refactor and enhance test script                                                 

examples/helloworld/tf_example1/test.py

  • Refactored dataloader creation into build_dataloader function
  • Added error handling for missing dataset and model files
  • Improved code readability and added comments
+57/-17 

Signed-off-by: letonghan <[email protected]>
@PRAgent4INC
Copy link
Collaborator

PR Reviewer Guide 🔍

Here are some key observations to aid the review process:

⏱️ Estimated effort to review: 3 🔵🔵🔵⚪⚪
🧪 No relevant tests
🔒 No security concerns identified
⚡ Recommended focus areas for review

Possible Issue

The dataset_location default value is set to "./dataset" if FLAGS.dataset_location is None. This might not be the intended behavior if the user expects an error when the flag is not provided.

dataset_location = FLAGS.dataset_location or "./dataset"
Code Duplication

The build_dataloader function is called twice with the same parameters for both calibration and evaluation. Consider reusing the same dataloader instance if appropriate.

calib_dataloader = build_dataloader(root=str(ds_path), batch_size=calib_batch_size)
eval_dataloader = build_dataloader(root=str(ds_path), batch_size=eval_batch_size)

@letonghan
Copy link
Contributor Author

/improve

@PRAgent4INC
Copy link
Collaborator

PRAgent4INC commented Sep 25, 2025

PR Code Suggestions ✨

Latest suggestions up to 6869e24

CategorySuggestion                                                                                                                                    Impact
General
Use constants for default paths

Use constants for default paths to improve readability and maintainability.

examples/helloworld/tf_example1/test.py [42-43]

-dataset_location = FLAGS.dataset_location or "./dataset"
-model_path = "./mobilenet_v1_1.0_224_frozen.pb"
+DEFAULT_DATASET_LOCATION = "./dataset"
+DEFAULT_MODEL_PATH = "./mobilenet_v1_1.0_224_frozen.pb"
 
+dataset_location = FLAGS.dataset_location or DEFAULT_DATASET_LOCATION
+model_path = DEFAULT_MODEL_PATH
+
Suggestion importance[1-10]: 6

__

Why: Using constants for default paths improves readability and maintainability, but it's not a critical change.

Low
Combine file existence checks

Combine the existence checks into a single function for better organization.

examples/helloworld/tf_example1/test.py [52-55]

-if not ds_path.exists():
-    raise FileNotFoundError(f"Dataset path not found: {ds_path}")
-if not model_file.exists():
-    raise FileNotFoundError(f"Model file not found: {model_file}")
+def check_file_exists(path: Path, description: str) -> None:
+    if not path.exists():
+        raise FileNotFoundError(f"{description} not found: {path}")
 
+check_file_exists(ds_path, "Dataset path")
+check_file_exists(model_file, "Model file")
+
Suggestion importance[1-10]: 6

__

Why: Combining existence checks into a single function improves organization, but it's not a critical change.

Low
Format fit function call

Ensure that the fit function call is properly formatted and readable.

examples/helloworld/tf_example1/test.py [65-71]

+q_model = fit(
+    model=str(model_file),
+    conf=config,
+    calib_dataloader=calib_dataloader,
+    eval_dataloader=eval_dataloader,
+    eval_metric=top1,
+)
 
-
Suggestion importance[1-10]: 3

__

Why: The fit function call is already properly formatted and readable, so this suggestion offers minimal improvement.

Low

Previous suggestions

Suggestions up to commit 6869e24
CategorySuggestion                                                                                                                                    Impact
General
Use constants for default paths

Use constants for default paths to improve readability and maintainability.

examples/helloworld/tf_example1/test.py [42-43]

-dataset_location = FLAGS.dataset_location or "./dataset"
-model_path = "./mobilenet_v1_1.0_224_frozen.pb"
+DEFAULT_DATASET_LOCATION = "./dataset"
+DEFAULT_MODEL_PATH = "./mobilenet_v1_1.0_224_frozen.pb"
 
+dataset_location = FLAGS.dataset_location or DEFAULT_DATASET_LOCATION
+model_path = DEFAULT_MODEL_PATH
+
Suggestion importance[1-10]: 6

__

Why: Using constants for default paths improves readability and maintainability, but it's not a critical change.

Low
Combine file existence checks

Combine the checks into a single loop to reduce redundancy.

examples/helloworld/tf_example1/test.py [52-55]

-if not ds_path.exists():
-    raise FileNotFoundError(f"Dataset path not found: {ds_path}")
-if not model_file.exists():
-    raise FileNotFoundError(f"Model file not found: {model_file}")
+for path, description in [(ds_path, "Dataset"), (model_file, "Model")]:
+    if not path.exists():
+        raise FileNotFoundError(f"{description} path not found: {path}")
Suggestion importance[1-10]: 6

__

Why: Combining the checks into a single loop reduces redundancy, improving code efficiency slightly.

Low
Align fit function arguments

Ensure fit function arguments are aligned for better readability.

examples/helloworld/tf_example1/test.py [65-71]

+q_model = fit(
+    model=str(model_file),
+    conf=config,
+    calib_dataloader=calib_dataloader,
+    eval_dataloader=eval_dataloader,
+    eval_metric=top1,
+)
 
-
Suggestion importance[1-10]: 5

__

Why: Aligning the fit function arguments improves readability marginally, but the existing alignment is already clear.

Low

@letonghan
Copy link
Contributor Author

/update_changelog

@PRAgent4INC
Copy link
Collaborator

Changelog updates: 🔄

2025-09-25

Changed

  • Refactored dataloader creation into a function.
  • Added error handling for missing dataset and model files.
  • Improved code readability and added comments.

to commit the new content to the CHANGELOG.md file, please type:
'/update_changelog --pr_update_changelog.push_changelog_changes=true'

@letonghan
Copy link
Contributor Author

/ask "rate this PR quality, from 1 to 10. explain your answers, and give examples"

@PRAgent4INC
Copy link
Collaborator

Ask

rate this pr quality, from 1 to 10. explain your answers, and give examples

Answer:

PR Quality Rating: 8/10

Explanation:

  1. Code Refactoring:

    • Positive: The refactoring of dataloader creation into a build_dataloader function improves code reusability and readability. This is a good practice as it centralizes the dataloader logic, making it easier to maintain and modify.
    • Example: The new build_dataloader function clearly defines the steps needed to create a DefaultDataLoader, which enhances the modularity of the code.
  2. Error Handling:

    • Positive: Adding error handling for missing dataset and model files is a significant improvement. It ensures that the script fails gracefully and provides clear feedback on what went wrong.
    • Example: The checks for dataset_location and model_path using Path.exists() are effective and user-friendly.
  3. Code Readability:

    • Positive: The addition of comments and docstrings improves the readability of the code. This is particularly helpful for new contributors or anyone revisiting the code after some time.
    • Example: The docstring for build_dataloader explains its purpose and parameters, which aids in understanding the function's role.
  4. Consistency:

    • Positive: The PR maintains consistency with the original code where necessary, such as keeping the use of tf.flags.
    • Example: The flags.DEFINE_string for dataset_location retains the original comment and structure, ensuring compatibility.
  5. Potential Improvements:

    • Negative: The default value for dataset_location is set to "./dataset" in the error handling section, but it is not reflected in the flags.DEFINE_string. This discrepancy could lead to confusion.
      • Example: Consider setting a default value in both places or removing the default in the error handling if it's not intended to be used.
    • Negative: The calib_size variable is defined but not used directly in the PostTrainingQuantConfig. Instead, the hardcoded value [20] is used. This could be improved for consistency.
      • Example: Use the calib_size variable in the PostTrainingQuantConfig to ensure consistency and make the code more flexible.

Overall, the PR significantly improves the quality of the code by refactoring, adding error handling, and enhancing readability. With minor adjustments to address the noted inconsistencies, it would achieve a perfect score.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants