Skip to content

Conversation

codeflash-ai[bot]
Copy link

@codeflash-ai codeflash-ai bot commented Oct 10, 2025

📄 49% (0.49x) speedup for create_uri_from_resource_name in google/cloud/aiplatform/metadata/schema/utils.py

⏱️ Runtime : 5.52 milliseconds 3.71 milliseconds (best of 177 runs)

📝 Explanation and details

The optimized code achieves a 48% speedup by precompiling the regex pattern at module load time instead of recompiling it on every function call.

What changed:

  • Moved the regex pattern compilation outside the function into a module-level variable _RESOURCE_NAME_REGEX
  • Changed re.match() call to use the precompiled pattern object instead of the raw string pattern
  • Simplified the regex string formatting (removed unnecessary escapes) without changing matching behavior

Why this is faster:
In Python's re module, calling re.match(pattern_string, text) internally compiles the pattern on every call. The line profiler shows the original code spent 67.9% of its time in the re.match() call. By precompiling the pattern once at import time, each function call only needs to execute the already-compiled pattern against the input string, eliminating the compilation overhead.

Performance characteristics:

  • Greatest speedups (40-50%) occur with valid resource names that require full regex evaluation
  • Excellent speedups (60-80%+) for invalid inputs that fail early in pattern matching
  • Consistent improvements across all test scenarios: basic cases, edge cases with special characters, and large-scale operations
  • The optimization scales well with repeated calls - the more the function is used, the more time saved

This is a classic performance optimization for frequently-called functions that use regex patterns.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 6198 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
import re

# imports
import pytest  # used for our unit tests
from aiplatform.metadata.schema.utils import create_uri_from_resource_name

# unit tests

# -------------------- BASIC TEST CASES --------------------

def test_basic_no_metadata_store():
    # Basic: resource name without metadataStore, no version
    resource_name = "projects/test-project/locations/us-central1/models/12345"
    expected = "https://us-central1-aiplatform.googleapis.com/v1/projects/test-project/locations/us-central1/models/12345"
    codeflash_output = create_uri_from_resource_name(resource_name) # 3.83μs -> 2.98μs (28.9% faster)

def test_basic_with_metadata_store():
    # Basic: resource name with metadataStore, no version
    resource_name = "projects/myproj/locations/europe-west4/metadataStores/store1/artifacts/abcde"
    expected = "https://europe-west4-aiplatform.googleapis.com/v1/projects/myproj/locations/europe-west4/metadataStores/store1/artifacts/abcde"
    codeflash_output = create_uri_from_resource_name(resource_name) # 3.50μs -> 2.50μs (39.9% faster)

def test_basic_with_version():
    # Basic: resource name with version, no metadataStore
    resource_name = "projects/proj/locations/asia-east1/datasets/6789@v2"
    expected = "https://asia-east1-aiplatform.googleapis.com/v1/projects/proj/locations/asia-east1/datasets/6789@v2"
    codeflash_output = create_uri_from_resource_name(resource_name) # 3.20μs -> 2.29μs (39.5% faster)

def test_basic_with_metadata_store_and_version():
    # Basic: resource name with both metadataStore and version
    resource_name = "projects/proj/locations/us-west1/metadataStores/store2/models/2222@ver-1"
    expected = "https://us-west1-aiplatform.googleapis.com/v1/projects/proj/locations/us-west1/metadataStores/store2/models/2222@ver-1"
    codeflash_output = create_uri_from_resource_name(resource_name) # 3.27μs -> 2.41μs (35.6% faster)

# -------------------- EDGE TEST CASES --------------------

def test_edge_project_with_dash_and_underscore():
    # Edge: project name with dash and underscore
    resource_name = "projects/my_proj-123/locations/northamerica-northeast1/models/model_1"
    expected = "https://northamerica-northeast1-aiplatform.googleapis.com/v1/projects/my_proj-123/locations/northamerica-northeast1/models/model_1"
    codeflash_output = create_uri_from_resource_name(resource_name) # 3.31μs -> 2.43μs (36.5% faster)

def test_edge_location_with_dash():
    # Edge: location with dash
    resource_name = "projects/proj/locations/southamerica-east1/artifacts/artifact1"
    expected = "https://southamerica-east1-aiplatform.googleapis.com/v1/projects/proj/locations/southamerica-east1/artifacts/artifact1"
    codeflash_output = create_uri_from_resource_name(resource_name) # 3.12μs -> 2.29μs (36.2% faster)

def test_edge_resource_type_with_dash():
    # Edge: resource_type with dash (should be supported by regex)
    resource_name = "projects/proj/locations/us-central1/model-evaluations/98765"
    expected = "https://us-central1-aiplatform.googleapis.com/v1/projects/proj/locations/us-central1/model-evaluations/98765"
    codeflash_output = create_uri_from_resource_name(resource_name) # 3.19μs -> 2.30μs (39.1% faster)

def test_edge_resource_id_with_dash_and_underscore():
    # Edge: resource_id with dash and underscore
    resource_name = "projects/proj/locations/us-central1/models/model-1_2"
    expected = "https://us-central1-aiplatform.googleapis.com/v1/projects/proj/locations/us-central1/models/model-1_2"
    codeflash_output = create_uri_from_resource_name(resource_name) # 3.11μs -> 2.32μs (34.1% faster)

def test_edge_store_id_with_dash_and_underscore():
    # Edge: store_id with dash and underscore
    resource_name = "projects/proj/locations/us-central1/metadataStores/store-1_2/models/123"
    expected = "https://us-central1-aiplatform.googleapis.com/v1/projects/proj/locations/us-central1/metadataStores/store-1_2/models/123"
    codeflash_output = create_uri_from_resource_name(resource_name) # 3.33μs -> 2.37μs (40.5% faster)

def test_edge_version_with_dash_and_underscore():
    # Edge: version with dash and underscore
    resource_name = "projects/proj/locations/us-central1/models/123@ver-1_2"
    expected = "https://us-central1-aiplatform.googleapis.com/v1/projects/proj/locations/us-central1/models/123@ver-1_2"
    codeflash_output = create_uri_from_resource_name(resource_name) # 3.19μs -> 2.39μs (33.6% faster)

def test_edge_minimal_resource_id():
    # Edge: minimal resource_id (single character)
    resource_name = "projects/p/locations/l/models/a"
    expected = "https://l-aiplatform.googleapis.com/v1/projects/p/locations/l/models/a"
    codeflash_output = create_uri_from_resource_name(resource_name) # 2.96μs -> 2.04μs (45.0% faster)

def test_edge_maximal_resource_id():
    # Edge: maximal resource_id (long string)
    long_id = "a" * 255
    resource_name = f"projects/proj/locations/us-central1/models/{long_id}"
    expected = f"https://us-central1-aiplatform.googleapis.com/v1/projects/proj/locations/us-central1/models/{long_id}"
    codeflash_output = create_uri_from_resource_name(resource_name) # 3.67μs -> 2.78μs (31.7% faster)

def test_edge_invalid_resource_name_missing_parts():
    # Edge: missing parts (should raise ValueError)
    resource_name = "projects/proj/locations/us-central1/models"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(resource_name) # 3.61μs -> 2.46μs (46.3% faster)

def test_edge_invalid_resource_name_wrong_order():
    # Edge: wrong order (should raise ValueError)
    resource_name = "locations/us-central1/projects/proj/models/123"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(resource_name) # 2.14μs -> 1.16μs (84.7% faster)

def test_edge_invalid_resource_name_extra_slash():
    # Edge: extra slash (should raise ValueError)
    resource_name = "projects/proj/locations/us-central1//models/123"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(resource_name) # 3.56μs -> 2.42μs (47.3% faster)

def test_edge_invalid_resource_name_missing_project():
    # Edge: missing project (should raise ValueError)
    resource_name = "projects//locations/us-central1/models/123"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(resource_name) # 2.24μs -> 1.25μs (79.0% faster)

def test_edge_invalid_resource_name_missing_location():
    # Edge: missing location (should raise ValueError)
    resource_name = "projects/proj/locations//models/123"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(resource_name) # 2.53μs -> 1.55μs (63.4% faster)

def test_edge_invalid_resource_name_missing_resource_id():
    # Edge: missing resource_id (should raise ValueError)
    resource_name = "projects/proj/locations/us-central1/models/"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(resource_name) # 3.60μs -> 2.56μs (40.9% faster)

def test_edge_invalid_resource_name_with_nested_resource():
    # Edge: nested resource (should raise ValueError, not supported yet)
    resource_name = "projects/proj/locations/us-central1/models/123/evaluations/456"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(resource_name) # 3.84μs -> 2.89μs (32.8% faster)

def test_edge_invalid_resource_name_with_spaces():
    # Edge: resource name with spaces (should raise ValueError)
    resource_name = "projects/proj/locations/us central1/models/123"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(resource_name) # 2.88μs -> 1.86μs (55.3% faster)

def test_edge_invalid_resource_name_with_special_chars():
    # Edge: resource name with special characters (should raise ValueError)
    resource_name = "projects/proj/locations/us-central1/models/12$3"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(resource_name) # 3.79μs -> 2.78μs (36.6% faster)

def test_edge_resource_name_with_uppercase():
    # Edge: uppercase in resource name (should be accepted)
    resource_name = "projects/PROJ/locations/US-CENTRAL1/models/ABC"
    expected = "https://US-CENTRAL1-aiplatform.googleapis.com/v1/projects/PROJ/locations/US-CENTRAL1/models/ABC"
    codeflash_output = create_uri_from_resource_name(resource_name) # 3.36μs -> 2.58μs (29.9% faster)

def test_edge_resource_type_with_numbers():
    # Edge: resource_type with numbers
    resource_name = "projects/proj/locations/us-central1/model2/123"
    expected = "https://us-central1-aiplatform.googleapis.com/v1/projects/proj/locations/us-central1/model2/123"
    codeflash_output = create_uri_from_resource_name(resource_name) # 3.26μs -> 2.28μs (42.9% faster)

# -------------------- LARGE SCALE TEST CASES --------------------

def test_large_scale_many_resource_names():
    # Large scale: test with many resource names
    for i in range(1000):  # up to 1000 resource names
        resource_name = f"projects/proj/locations/us-central1/models/model{i}"
        expected = f"https://us-central1-aiplatform.googleapis.com/v1/projects/proj/locations/us-central1/models/model{i}"
        codeflash_output = create_uri_from_resource_name(resource_name) # 872μs -> 585μs (49.1% faster)

def test_large_scale_long_resource_name():
    # Large scale: very long resource name
    long_project = "p" * 100
    long_location = "l" * 100
    long_type = "t" * 100
    long_id = "i" * 100
    resource_name = f"projects/{long_project}/locations/{long_location}/{long_type}/{long_id}"
    expected = f"https://{long_location}-aiplatform.googleapis.com/v1/projects/{long_project}/locations/{long_location}/{long_type}/{long_id}"
    codeflash_output = create_uri_from_resource_name(resource_name) # 4.68μs -> 3.63μs (29.0% faster)

def test_large_scale_long_metadata_store_and_version():
    # Large scale: long metadata store and version
    long_store = "store" * 50
    long_version = "ver" * 50
    resource_name = f"projects/proj/locations/us-central1/metadataStores/{long_store}/models/123@{long_version}"
    expected = f"https://us-central1-aiplatform.googleapis.com/v1/projects/proj/locations/us-central1/metadataStores/{long_store}/models/123@{long_version}"
    codeflash_output = create_uri_from_resource_name(resource_name) # 4.38μs -> 3.31μs (32.4% faster)

def test_large_scale_unique_locations():
    # Large scale: test with many unique locations
    for i in range(1000):
        location = f"loc{i}"
        resource_name = f"projects/proj/locations/{location}/models/123"
        expected = f"https://{location}-aiplatform.googleapis.com/v1/projects/proj/locations/{location}/models/123"
        codeflash_output = create_uri_from_resource_name(resource_name) # 850μs -> 557μs (52.7% faster)

def test_large_scale_unique_projects():
    # Large scale: test with many unique projects
    for i in range(1000):
        project = f"proj{i}"
        resource_name = f"projects/{project}/locations/us-central1/models/123"
        expected = f"https://us-central1-aiplatform.googleapis.com/v1/projects/{project}/locations/us-central1/models/123"
        codeflash_output = create_uri_from_resource_name(resource_name) # 870μs -> 588μs (47.8% faster)

def test_large_scale_unique_resource_types():
    # Large scale: test with many unique resource types
    for i in range(1000):
        resource_type = f"type{i}"
        resource_name = f"projects/proj/locations/us-central1/{resource_type}/123"
        expected = f"https://us-central1-aiplatform.googleapis.com/v1/projects/proj/locations/us-central1/{resource_type}/123"
        codeflash_output = create_uri_from_resource_name(resource_name) # 868μs -> 577μs (50.4% faster)

def test_large_scale_unique_resource_ids():
    # Large scale: test with many unique resource ids
    for i in range(1000):
        resource_id = f"id{i}"
        resource_name = f"projects/proj/locations/us-central1/models/{resource_id}"
        expected = f"https://us-central1-aiplatform.googleapis.com/v1/projects/proj/locations/us-central1/models/{resource_id}"
        codeflash_output = create_uri_from_resource_name(resource_name) # 862μs -> 577μs (49.3% faster)

def test_large_scale_unique_versions():
    # Large scale: test with many unique versions
    for i in range(1000):
        version = f"ver{i}"
        resource_name = f"projects/proj/locations/us-central1/models/123@{version}"
        expected = f"https://us-central1-aiplatform.googleapis.com/v1/projects/proj/locations/us-central1/models/123@{version}"
        codeflash_output = create_uri_from_resource_name(resource_name) # 884μs -> 608μs (45.2% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
import re

# imports
import pytest  # used for our unit tests
from aiplatform.metadata.schema.utils import create_uri_from_resource_name

# unit tests

# ---------------------------
# Basic Test Cases
# ---------------------------

def test_basic_resource_no_metadata_store():
    # Basic resource name, no metadata store, no version
    rn = "projects/myproj/locations/us-central1/models/123456"
    expected = "https://us-central1-aiplatform.googleapis.com/v1/projects/myproj/locations/us-central1/models/123456"
    codeflash_output = create_uri_from_resource_name(rn) # 3.72μs -> 2.69μs (38.5% faster)

def test_basic_resource_with_version():
    # Basic resource name, no metadata store, with version
    rn = "projects/myproj/locations/europe-west4/endpoints/ep123@v2"
    expected = "https://europe-west4-aiplatform.googleapis.com/v1/projects/myproj/locations/europe-west4/endpoints/ep123@v2"
    codeflash_output = create_uri_from_resource_name(rn) # 3.30μs -> 2.35μs (40.4% faster)

def test_resource_with_metadata_store():
    # Resource name with metadata store, no version
    rn = "projects/myproj/locations/asia-east1/metadataStores/store-1/artifacts/art123"
    expected = "https://asia-east1-aiplatform.googleapis.com/v1/projects/myproj/locations/asia-east1/metadataStores/store-1/artifacts/art123"
    codeflash_output = create_uri_from_resource_name(rn) # 3.25μs -> 2.35μs (38.4% faster)

def test_resource_with_metadata_store_and_version():
    # Resource name with metadata store and version
    rn = "projects/proj-2/locations/us-west1/metadataStores/ms-99/artifacts/art-abc@v5"
    expected = "https://us-west1-aiplatform.googleapis.com/v1/projects/proj-2/locations/us-west1/metadataStores/ms-99/artifacts/art-abc@v5"
    codeflash_output = create_uri_from_resource_name(rn) # 3.39μs -> 2.44μs (39.0% faster)

def test_resource_type_with_hyphens_and_underscores():
    # Resource type and id with hyphens and underscores
    rn = "projects/proj-3/locations/us-central1/datasets/ds_001-abc"
    expected = "https://us-central1-aiplatform.googleapis.com/v1/projects/proj-3/locations/us-central1/datasets/ds_001-abc"
    codeflash_output = create_uri_from_resource_name(rn) # 3.25μs -> 2.32μs (40.1% faster)

# ---------------------------
# Edge Test Cases
# ---------------------------

def test_invalid_resource_missing_projects():
    # Missing 'projects/' prefix
    rn = "myproj/locations/us-central1/models/123456"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(rn) # 2.22μs -> 1.24μs (79.2% faster)

def test_invalid_resource_missing_locations():
    # Missing 'locations/' segment
    rn = "projects/myproj/us-central1/models/123456"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(rn) # 2.65μs -> 1.69μs (56.6% faster)

def test_invalid_resource_missing_resource_type():
    # Missing resource type (e.g. models)
    rn = "projects/myproj/locations/us-central1/123456"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(rn) # 3.70μs -> 2.73μs (35.4% faster)

def test_invalid_resource_missing_resource_id():
    # Missing resource id
    rn = "projects/myproj/locations/us-central1/models/"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(rn) # 3.66μs -> 2.57μs (42.7% faster)

def test_invalid_resource_extra_segments():
    # Extra segment after resource id
    rn = "projects/myproj/locations/us-central1/models/123456/extra"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(rn) # 4.11μs -> 3.02μs (36.1% faster)

def test_invalid_resource_empty_string():
    # Empty string
    rn = ""
    with pytest.raises(ValueError):
        create_uri_from_resource_name(rn) # 2.07μs -> 1.13μs (83.4% faster)

def test_invalid_resource_only_projects():
    # Only 'projects/' segment
    rn = "projects/myproj"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(rn) # 2.06μs -> 1.10μs (88.2% faster)

def test_resource_with_unusual_characters():
    # Resource id with allowed but unusual characters (hyphens, underscores)
    rn = "projects/my_proj-1/locations/us-central1/models/model_001-abc"
    expected = "https://us-central1-aiplatform.googleapis.com/v1/projects/my_proj-1/locations/us-central1/models/model_001-abc"
    codeflash_output = create_uri_from_resource_name(rn) # 3.71μs -> 2.98μs (24.5% faster)

def test_resource_with_numeric_location_and_project():
    # Numeric location and project
    rn = "projects/12345/locations/67890/models/abcde"
    expected = "https://67890-aiplatform.googleapis.com/v1/projects/12345/locations/67890/models/abcde"
    codeflash_output = create_uri_from_resource_name(rn) # 3.21μs -> 2.30μs (39.5% faster)

def test_resource_with_long_version_string():
    # Very long version string
    rn = "projects/p/locations/l/models/id@thisisaverylongversionstring"
    expected = "https://l-aiplatform.googleapis.com/v1/projects/p/locations/l/models/id@thisisaverylongversionstring"
    codeflash_output = create_uri_from_resource_name(rn) # 3.28μs -> 2.30μs (42.8% faster)

def test_metadata_store_with_hyphens():
    # Metadata store id with hyphens
    rn = "projects/proj/locations/loc/metadataStores/ms-1/artifacts/art-1"
    expected = "https://loc-aiplatform.googleapis.com/v1/projects/proj/locations/loc/metadataStores/ms-1/artifacts/art-1"
    codeflash_output = create_uri_from_resource_name(rn) # 3.28μs -> 2.38μs (37.7% faster)

def test_resource_with_minimal_length_segments():
    # All segments are single character
    rn = "projects/a/locations/b/models/c"
    expected = "https://b-aiplatform.googleapis.com/v1/projects/a/locations/b/models/c"
    codeflash_output = create_uri_from_resource_name(rn) # 2.99μs -> 2.16μs (38.8% faster)

def test_resource_with_maximal_length_segments():
    # Segments at reasonable length limits
    project = "p" * 50
    location = "loc" * 10
    resource_type = "model"
    resource_id = "id" * 20
    rn = f"projects/{project}/locations/{location}/{resource_type}/{resource_id}"
    expected = f"https://{location}-aiplatform.googleapis.com/v1/projects/{project}/locations/{location}/{resource_type}/{resource_id}"
    codeflash_output = create_uri_from_resource_name(rn) # 3.30μs -> 2.35μs (40.7% faster)

def test_resource_with_at_in_id():
    # '@' in resource id should not match (only allowed for version)
    rn = "projects/p/locations/l/models/id@abc@v2"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(rn) # 3.48μs -> 2.54μs (37.2% faster)

def test_resource_with_double_slash():
    # Double slash in resource name should not match
    rn = "projects/p/locations/l//models/id"
    with pytest.raises(ValueError):
        create_uri_from_resource_name(rn) # 2.80μs -> 1.74μs (60.5% faster)

# ---------------------------
# Large Scale Test Cases
# ---------------------------

def test_large_number_of_resources():
    # Test many valid resource names in a loop
    for i in range(100):  # limit to 100 for speed
        rn = f"projects/proj{i}/locations/loc{i}/models/model{i}"
        expected = f"https://loc{i}-aiplatform.googleapis.com/v1/projects/proj{i}/locations/loc{i}/models/model{i}"
        codeflash_output = create_uri_from_resource_name(rn) # 91.0μs -> 60.9μs (49.6% faster)

def test_large_resource_id_and_version():
    # Resource id and version are very long
    resource_id = "x" * 500
    version = "v" * 200
    rn = f"projects/p/locations/l/models/{resource_id}@{version}"
    expected = f"https://l-aiplatform.googleapis.com/v1/projects/p/locations/l/models/{resource_id}@{version}"
    codeflash_output = create_uri_from_resource_name(rn) # 4.79μs -> 3.96μs (20.9% faster)

def test_large_metadata_store_and_resource_id():
    # Large metadata store id and resource id
    store_id = "store" * 50
    resource_id = "res" * 100
    rn = f"projects/p/locations/l/metadataStores/{store_id}/models/{resource_id}"
    expected = f"https://l-aiplatform.googleapis.com/v1/projects/p/locations/l/metadataStores/{store_id}/models/{resource_id}"
    codeflash_output = create_uri_from_resource_name(rn) # 4.36μs -> 3.48μs (25.1% faster)

def test_large_project_and_location_names():
    # Large project and location names
    project = "project" * 100
    location = "location" * 50
    rn = f"projects/{project}/locations/{location}/models/id"
    expected = f"https://{location}-aiplatform.googleapis.com/v1/projects/{project}/locations/{location}/models/id"
    codeflash_output = create_uri_from_resource_name(rn) # 5.52μs -> 4.63μs (19.3% faster)

def test_large_scale_invalid_resource_names():
    # Many invalid resource names should all raise ValueError
    for i in range(50):  # limit for speed
        rn = f"projects/proj{i}/locations/loc{i}/models/"
        with pytest.raises(ValueError):
            create_uri_from_resource_name(rn)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-create_uri_from_resource_name-mgkcwlaq and push.

Codeflash

The optimized code achieves a **48% speedup** by **precompiling the regex pattern** at module load time instead of recompiling it on every function call.

**What changed:**
- Moved the regex pattern compilation outside the function into a module-level variable `_RESOURCE_NAME_REGEX`
- Changed `re.match()` call to use the precompiled pattern object instead of the raw string pattern
- Simplified the regex string formatting (removed unnecessary escapes) without changing matching behavior

**Why this is faster:**
In Python's `re` module, calling `re.match(pattern_string, text)` internally compiles the pattern on every call. The line profiler shows the original code spent 67.9% of its time in the `re.match()` call. By precompiling the pattern once at import time, each function call only needs to execute the already-compiled pattern against the input string, eliminating the compilation overhead.

**Performance characteristics:**
- **Greatest speedups** (40-50%) occur with valid resource names that require full regex evaluation
- **Excellent speedups** (60-80%+) for invalid inputs that fail early in pattern matching
- **Consistent improvements** across all test scenarios: basic cases, edge cases with special characters, and large-scale operations
- The optimization scales well with repeated calls - the more the function is used, the more time saved

This is a classic performance optimization for frequently-called functions that use regex patterns.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 October 10, 2025 04:38
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Oct 10, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants