Skip to content

[RA-L'25] CLID-SLAM: A Coupled LiDAR-Inertial Neural Implicit Dense SLAM with Region-Specific SDF Estimation

License

Notifications You must be signed in to change notification settings

DUTRobot/CLID-SLAM

Repository files navigation

CLID-SLAM: A Coupled LiDAR-Inertial Neural Implicit Dense SLAM With Region-Specific SDF Estimation

FORK Issues

Mapping result

TL;DR: CLID-SLAM is a tightly-coupled LiDAR-Inertial Odometry and dense Mapping framework, which utilizes the Iterated Error-State Extended Kalman Filter (IESEKF) to fuse Signed Distance Function (SDF) predictions and IMU data to improve robustness.

Installation

Platform Requirements

We tested our code on Ubuntu 20.04 with an NVIDIA RTX 4090.

Steps

# Install Miniforge3
wget -O Miniforge3.sh "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh"
bash Miniforge3-$(uname)-$(uname -m).sh
# Clone the repo
git clone [email protected]:DUTRobot/CLID-SLAM.git
cd CLID-SLAM
# create conda environment
mamba create -n ros_env python=3.11
# Install ROS noetic
mamba install ros-noetic-desktop-full -c robostack-noetic -c conda-forge
# install pytorch
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128
pip3 install -r requirements.txt

Data Preparation

Download ROSbag Files

Newer College Dataset (also available on Baidu Disk due to Google Drive's maximum file size limit).

SubT-MRS Dataset

Convert to Sequences

Edit ./dataset/converter/config/rosbag2dataset.yaml.

input_bag: '/home/jiang/hku1_converted.bag'
output_folder: './dataset/hku/'
imu_topic: '/livox/imu'
lidar_topic: '/livox/pointcloud2'
image_topic: "/left_camera/image/compressed"  # or /camera/color/image_raw
batch_size: 100 # Number of messages per batch
end_frame: -1 # -1 means process the entire bag file

Run:

python3 ./dataset/converter/rosbag2dataset_parallel.py

How to run it

python3 slam.py ./config/run_ncd128.yaml

Acknowledgements

This project builds on PIN-SLAM by PRBonn/YuePanEdward. We gratefully acknowledge their valuable contributions.

About

[RA-L'25] CLID-SLAM: A Coupled LiDAR-Inertial Neural Implicit Dense SLAM with Region-Specific SDF Estimation

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •