|
| 1 | +import argparse |
| 2 | +import functools |
| 3 | +import re |
| 4 | +from pathlib import Path |
| 5 | + |
| 6 | +import polars as pl |
| 7 | +import torch |
| 8 | + |
| 9 | +from sglang.srt.debug_utils.dumper import get_truncated_value |
| 10 | + |
| 11 | + |
| 12 | +def main(args): |
| 13 | + df_target = read_meta(args.target_path) |
| 14 | + df_target = df_target.sort("rank", "dump_index") |
| 15 | + df_target = df_target.filter( |
| 16 | + (pl.col("forward_pass_id") >= args.start_id) |
| 17 | + & (pl.col("forward_pass_id") <= args.end_id) |
| 18 | + ) |
| 19 | + assert all( |
| 20 | + c in df_target.columns |
| 21 | + for c in ["rank", "forward_pass_id", "dump_index", "name"] |
| 22 | + ) |
| 23 | + |
| 24 | + df_baseline = read_meta(args.baseline_path) |
| 25 | + print("df_target", df_target) |
| 26 | + print("df_baseline", df_baseline) |
| 27 | + |
| 28 | + for row in df_target.iter_rows(named=True): |
| 29 | + rows_baseline = df_baseline.filter( |
| 30 | + ( |
| 31 | + pl.col("forward_pass_id") |
| 32 | + == row["forward_pass_id"] - args.start_id + args.baseline_start_id |
| 33 | + ) |
| 34 | + & functools.reduce( |
| 35 | + lambda a, b: a & b, |
| 36 | + [ |
| 37 | + pl.col(col) == row[col] |
| 38 | + for col in row.keys() |
| 39 | + if col not in ["forward_pass_id", "dump_index", "filename"] |
| 40 | + ], |
| 41 | + ) |
| 42 | + ) |
| 43 | + assert len(rows_baseline) == 1, f"{rows_baseline=}" |
| 44 | + row_baseline = rows_baseline.to_dicts()[0] |
| 45 | + |
| 46 | + path_baseline = Path(args.baseline_path) / row_baseline["filename"] |
| 47 | + path_target = Path(args.target_path) / row["filename"] |
| 48 | + print(f"Check: target={str(path_target)} baseline={str(path_baseline)}") |
| 49 | + check_tensor_pair(path_baseline=path_baseline, path_target=path_target) |
| 50 | + print() |
| 51 | + |
| 52 | + |
| 53 | +def read_meta(directory): |
| 54 | + directory = Path(directory) |
| 55 | + assert directory.is_dir(), f"{directory=} should be a directory" |
| 56 | + |
| 57 | + rows = [] |
| 58 | + for p in directory.glob("*.pt"): |
| 59 | + full_kwargs = {} |
| 60 | + for kv in p.stem.split("___"): |
| 61 | + k, v = kv.split("=") |
| 62 | + full_kwargs[k] = v |
| 63 | + rows.append( |
| 64 | + { |
| 65 | + "filename": str(p.name), |
| 66 | + **full_kwargs, |
| 67 | + } |
| 68 | + ) |
| 69 | + |
| 70 | + df = pl.DataFrame(rows) |
| 71 | + df = df.with_columns( |
| 72 | + pl.col("forward_pass_id").cast(int), |
| 73 | + pl.col("rank").cast(int), |
| 74 | + ) |
| 75 | + return df |
| 76 | + |
| 77 | + |
| 78 | +def check_tensor_pair(path_baseline, path_target): |
| 79 | + x_baseline = torch.load(path_baseline, weights_only=True) |
| 80 | + x_target = torch.load(path_target, weights_only=True) |
| 81 | + |
| 82 | + print( |
| 83 | + f"[shape] {x_baseline.shape} vs {x_target.shape}\t" |
| 84 | + f"[dtype] {x_baseline.dtype} vs {x_target.dtype}" |
| 85 | + ) |
| 86 | + |
| 87 | + if x_baseline.shape != x_target.shape: |
| 88 | + print(f"❌ Shape mismatch") |
| 89 | + return |
| 90 | + |
| 91 | + raw_abs_diff = (x_target - x_baseline).abs() |
| 92 | + |
| 93 | + max_abs_diff = raw_abs_diff.max().item() |
| 94 | + mean_abs_diff = raw_abs_diff.mean().item() |
| 95 | + rel_diff = _calc_rel_diff(x_target, x_baseline) |
| 96 | + |
| 97 | + needs_print = max_abs_diff > 1e-3 |
| 98 | + |
| 99 | + print( |
| 100 | + "\t".join( |
| 101 | + f"{'❌' if value > 1e-3 else '✅'} {name}={value}" |
| 102 | + for name, value in [ |
| 103 | + ("rel_diff", rel_diff), |
| 104 | + ("max_abs_diff", max_abs_diff), |
| 105 | + ("mean_abs_diff", mean_abs_diff), |
| 106 | + ] |
| 107 | + ) |
| 108 | + ) |
| 109 | + |
| 110 | + if needs_print: |
| 111 | + print(f"x_baseline(sample)={get_truncated_value(x_baseline)}") |
| 112 | + print(f"x_target(sample)={get_truncated_value(x_target)}") |
| 113 | + |
| 114 | + |
| 115 | +# Copied from DeepGEMM |
| 116 | +def _calc_rel_diff(x: torch.Tensor, y: torch.Tensor): |
| 117 | + x, y = x.double(), y.double() |
| 118 | + denominator = (x * x + y * y).sum() |
| 119 | + sim = 2 * (x * y).sum() / denominator |
| 120 | + return 1 - sim |
| 121 | + |
| 122 | + |
| 123 | +if __name__ == "__main__": |
| 124 | + parser = argparse.ArgumentParser() |
| 125 | + parser.add_argument("--baseline-path", type=str) |
| 126 | + parser.add_argument("--target-path", type=str) |
| 127 | + parser.add_argument("--start-id", type=int, default=0) |
| 128 | + parser.add_argument("--end-id", type=int, default=1000000) |
| 129 | + parser.add_argument("--baseline-start-id", type=int, default=0) |
| 130 | + args = parser.parse_args() |
| 131 | + main(args) |
0 commit comments