|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | +# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/quantization/utils/quant_utils.py |
| 3 | + |
| 4 | +from typing import Optional |
| 5 | + |
| 6 | +import numpy |
| 7 | +import torch |
| 8 | +from sgl_kernel.scalar_type import ScalarType |
| 9 | + |
| 10 | + |
| 11 | +def get_pack_factor(num_bits): |
| 12 | + assert 32 % num_bits == 0, f"Unsupported num_bits = {num_bits}" |
| 13 | + return 32 // num_bits |
| 14 | + |
| 15 | + |
| 16 | +def pack_cols( |
| 17 | + q_w: torch.Tensor, |
| 18 | + num_bits: int, |
| 19 | + size_k: int, |
| 20 | + size_n: int, |
| 21 | +): |
| 22 | + assert q_w.shape == (size_k, size_n) |
| 23 | + |
| 24 | + pack_factor = get_pack_factor(num_bits) |
| 25 | + assert size_n % pack_factor == 0 |
| 26 | + |
| 27 | + orig_device = q_w.device |
| 28 | + |
| 29 | + q_w = q_w.cpu().numpy().astype(numpy.uint32) |
| 30 | + |
| 31 | + q_res = numpy.zeros((size_k, size_n // pack_factor), dtype=numpy.uint32) |
| 32 | + |
| 33 | + for i in range(pack_factor): |
| 34 | + q_res |= q_w[:, i::pack_factor] << num_bits * i |
| 35 | + |
| 36 | + q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device) |
| 37 | + q_res = q_res.contiguous() |
| 38 | + |
| 39 | + return q_res |
| 40 | + |
| 41 | + |
| 42 | +def unpack_cols( |
| 43 | + packed_q_w: torch.Tensor, |
| 44 | + num_bits: int, |
| 45 | + size_k: int, |
| 46 | + size_n: int, |
| 47 | +): |
| 48 | + pack_factor = get_pack_factor(num_bits) |
| 49 | + assert size_n % pack_factor == 0 |
| 50 | + assert packed_q_w.shape == ( |
| 51 | + size_k, |
| 52 | + size_n // pack_factor, |
| 53 | + ), "packed_q_w.shape = {} size_k = {}, size_n = {} pack_Factor = {}".format( |
| 54 | + packed_q_w.shape, size_k, size_n, pack_factor |
| 55 | + ) |
| 56 | + |
| 57 | + orig_device = packed_q_w.device |
| 58 | + |
| 59 | + packed_q_w_cpu = packed_q_w.cpu().numpy().astype(numpy.uint32) |
| 60 | + q_res = numpy.zeros((size_k, size_n), dtype=numpy.uint32) |
| 61 | + |
| 62 | + mask = (1 << num_bits) - 1 |
| 63 | + for i in range(pack_factor): |
| 64 | + vals = packed_q_w_cpu & mask |
| 65 | + packed_q_w_cpu >>= num_bits |
| 66 | + q_res[:, i::pack_factor] = vals |
| 67 | + |
| 68 | + q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device) |
| 69 | + q_res = q_res.contiguous() |
| 70 | + |
| 71 | + return q_res |
| 72 | + |
| 73 | + |
| 74 | +def quantize_weights( |
| 75 | + w: torch.Tensor, |
| 76 | + quant_type: ScalarType, |
| 77 | + group_size: Optional[int], |
| 78 | + zero_points: bool = False, |
| 79 | + ref_zero_points_after_scales: bool = False, |
| 80 | +): |
| 81 | + assert ( |
| 82 | + quant_type.is_integer() |
| 83 | + ), "Floating point quantization may work but has not been tested" |
| 84 | + assert not zero_points or group_size is not None, ( |
| 85 | + "to have group zero points, group_size must be provided " |
| 86 | + "(-1 group_size is channelwise)" |
| 87 | + ) |
| 88 | + |
| 89 | + orig_device = w.device |
| 90 | + orig_type = w.dtype |
| 91 | + size_k, size_n = w.shape |
| 92 | + |
| 93 | + assert w.is_floating_point(), "w must be float" |
| 94 | + |
| 95 | + if group_size == -1: |
| 96 | + group_size = size_k |
| 97 | + |
| 98 | + # Reshape to [groupsize, -1] |
| 99 | + if group_size is not None and group_size < size_k: |
| 100 | + w = w.reshape((-1, group_size, size_n)) |
| 101 | + w = w.permute(1, 0, 2) |
| 102 | + w = w.reshape((group_size, -1)) |
| 103 | + |
| 104 | + # Compute scale for each group |
| 105 | + max_val = torch.max(w, 0, keepdim=True).values |
| 106 | + min_val = torch.min(w, 0, keepdim=True).values |
| 107 | + |
| 108 | + max_q_val = quant_type.max() |
| 109 | + min_q_val = quant_type.min() |
| 110 | + |
| 111 | + w_s = torch.Tensor([1.0]).to(w.device) # unscaled case |
| 112 | + maybe_w_zp = None |
| 113 | + if group_size is not None: |
| 114 | + if zero_points: |
| 115 | + assert not quant_type.is_signed() and quant_type.max() > 0 |
| 116 | + w_s = (max_val - min_val).clamp(min=1e-5) / quant_type.max() |
| 117 | + maybe_w_zp = ( |
| 118 | + torch.round(torch.abs(min_val / w_s)).clamp(min_q_val, max_q_val).int() |
| 119 | + ) |
| 120 | + else: |
| 121 | + # If the bias is such that there are no possible negative/positive |
| 122 | + # values, set the max value to inf to avoid divide by 0 |
| 123 | + w_s = torch.max( |
| 124 | + abs(max_val / (max_q_val if max_q_val != 0 else torch.inf)), |
| 125 | + abs(min_val / (min_q_val if min_q_val != 0 else torch.inf)), |
| 126 | + ) |
| 127 | + |
| 128 | + # Quantize |
| 129 | + w_q = torch.round(w / w_s).int() + (maybe_w_zp if zero_points else 0) |
| 130 | + w_q = torch.clamp(w_q, min_q_val, max_q_val) |
| 131 | + |
| 132 | + # Compute ref (dequantized) |
| 133 | + # For some kernels (namely Machete) the zero-points are applied after the |
| 134 | + # scales are applied, for this case computing the reference in similar way |
| 135 | + # allows us to use tighter error tolerances in our unit tests. |
| 136 | + if ref_zero_points_after_scales and maybe_w_zp is not None: |
| 137 | + w_ref = w_q.to(orig_type) * w_s - maybe_w_zp.to(orig_type) * w_s |
| 138 | + else: |
| 139 | + w_ref = (w_q - (maybe_w_zp if zero_points else 0)).to(orig_type) * w_s |
| 140 | + |
| 141 | + if quant_type.has_bias(): |
| 142 | + w_q += quant_type.bias |
| 143 | + |
| 144 | + # Restore original shapes |
| 145 | + if group_size is not None and group_size < size_k: |
| 146 | + |
| 147 | + def reshape_w(w): |
| 148 | + w = w.reshape((group_size, -1, size_n)) |
| 149 | + w = w.permute(1, 0, 2) |
| 150 | + w = w.reshape((size_k, size_n)).contiguous() |
| 151 | + return w |
| 152 | + |
| 153 | + w_q = reshape_w(w_q) |
| 154 | + w_ref = reshape_w(w_ref) |
| 155 | + w_s = w_s.reshape((-1, size_n)).contiguous() |
| 156 | + |
| 157 | + if maybe_w_zp is not None: |
| 158 | + maybe_w_zp = maybe_w_zp.reshape((-1, size_n)).contiguous() |
| 159 | + maybe_w_zp = maybe_w_zp.to(device=orig_device) |
| 160 | + |
| 161 | + return ( |
| 162 | + w_ref.to(device=orig_device), |
| 163 | + w_q.to(device=orig_device), |
| 164 | + w_s if group_size is not None else None, |
| 165 | + maybe_w_zp, |
| 166 | + ) |
0 commit comments