|
| 1 | +import re |
| 2 | +from typing import List, Union |
| 3 | + |
| 4 | +import torch |
| 5 | + |
| 6 | +from sglang.srt.managers.multimodal_processors.base_processor import ( |
| 7 | + BaseMultimodalProcessor, |
| 8 | + MultimodalSpecialTokens, |
| 9 | +) |
| 10 | +from sglang.srt.managers.schedule_batch import Modality, MultimodalDataItem |
| 11 | +from sglang.srt.models.qwen2_audio import Qwen2AudioForConditionalGeneration |
| 12 | + |
| 13 | + |
| 14 | +class Qwen2AudioMultimodalProcessor(BaseMultimodalProcessor): |
| 15 | + models = [Qwen2AudioForConditionalGeneration] |
| 16 | + |
| 17 | + def __init__(self, hf_config, server_args, _processor): |
| 18 | + super().__init__(hf_config, server_args, _processor) |
| 19 | + self.AUDIO_TOKEN = "<|audio_bos|><|AUDIO|><|audio_eos|>" |
| 20 | + self.AUDIO_TOKEN_REGEX = re.compile( |
| 21 | + r"<\|audio_bos\|>(?:<\|AUDIO\|>)+<\|audio_eos\|>" |
| 22 | + ) |
| 23 | + |
| 24 | + async def process_mm_data_async( |
| 25 | + self, |
| 26 | + image_data: List[Union[str, bytes]], |
| 27 | + input_text, |
| 28 | + request_obj, |
| 29 | + max_req_input_len, |
| 30 | + **kwargs, |
| 31 | + ): |
| 32 | + audio_data = request_obj.audio_data |
| 33 | + if not isinstance(audio_data, list): |
| 34 | + audio_data = [audio_data] |
| 35 | + |
| 36 | + base_output = self.load_mm_data( |
| 37 | + prompt=input_text, |
| 38 | + max_req_input_len=max_req_input_len, |
| 39 | + audio_data=audio_data, |
| 40 | + multimodal_tokens=MultimodalSpecialTokens( |
| 41 | + audio_token=self.AUDIO_TOKEN, |
| 42 | + audio_token_regex=self.AUDIO_TOKEN_REGEX, |
| 43 | + ), |
| 44 | + ) |
| 45 | + if base_output is None: |
| 46 | + return None |
| 47 | + |
| 48 | + res = self.process_mm_data( |
| 49 | + input_text=base_output.input_text, |
| 50 | + audio=base_output.audios, |
| 51 | + ) |
| 52 | + |
| 53 | + # Collect special token ids |
| 54 | + tokenizer = self._processor.tokenizer |
| 55 | + audio_start_id = tokenizer.convert_tokens_to_ids("<|audio_bos|>") |
| 56 | + audio_token_id = tokenizer.convert_tokens_to_ids("<|AUDIO|>") |
| 57 | + audio_end_id = tokenizer.convert_tokens_to_ids("<|audio_eos|>") |
| 58 | + |
| 59 | + items = [] |
| 60 | + input_ids = res["input_ids"].flatten() |
| 61 | + |
| 62 | + if ( |
| 63 | + "input_features" in res |
| 64 | + and res["input_features"] is not None |
| 65 | + and len(res["input_features"]) != 0 |
| 66 | + ): |
| 67 | + if audio_start_id is not None and audio_end_id is not None: |
| 68 | + audio_offsets = self.get_mm_items_offset_by_pair( |
| 69 | + input_ids=input_ids, |
| 70 | + mm_start_id=audio_start_id, |
| 71 | + mm_end_id=audio_end_id, |
| 72 | + ) |
| 73 | + else: |
| 74 | + audio_offsets = None |
| 75 | + |
| 76 | + input_lengths = res["feature_attention_mask"].sum(dim=-1) |
| 77 | + input_lengths = (input_lengths - 1) // 2 + 1 |
| 78 | + output_lengths = (input_lengths - 2) // 2 + 1 |
| 79 | + |
| 80 | + item = MultimodalDataItem( |
| 81 | + audio_features=res["input_features"], |
| 82 | + audio_feature_lens=output_lengths, |
| 83 | + audio_offsets=audio_offsets, |
| 84 | + modality=Modality.AUDIO, |
| 85 | + ) |
| 86 | + items += [item] |
| 87 | + |
| 88 | + return { |
| 89 | + "mm_items": items, |
| 90 | + "input_ids": input_ids.tolist(), |
| 91 | + "audio_start_id": audio_start_id, |
| 92 | + "audio_token_id": audio_token_id, |
| 93 | + "audio_end_id": audio_end_id, |
| 94 | + } |
0 commit comments