|
19 | 19 | AutoModelForTableQuestionAnswering,
|
20 | 20 | AutoTokenizer,
|
21 | 21 | TableQuestionAnsweringPipeline,
|
22 |
| - TFAutoModelForTableQuestionAnswering, |
23 | 22 | pipeline,
|
24 | 23 | )
|
25 | 24 | from transformers.testing_utils import (
|
26 | 25 | is_pipeline_test,
|
27 |
| - require_pandas, |
28 |
| - require_tensorflow_probability, |
29 | 26 | require_torch,
|
30 | 27 | slow,
|
31 | 28 | )
|
@@ -316,55 +313,6 @@ def test_integration_wtq_pt(self, torch_dtype="float32"):
|
316 | 313 | def test_integration_wtq_pt_fp16(self):
|
317 | 314 | self.test_integration_wtq_pt(torch_dtype="float16")
|
318 | 315 |
|
319 |
| - @slow |
320 |
| - @require_tensorflow_probability |
321 |
| - @require_pandas |
322 |
| - def test_integration_wtq_tf(self): |
323 |
| - model_id = "google/tapas-base-finetuned-wtq" |
324 |
| - model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id) |
325 |
| - tokenizer = AutoTokenizer.from_pretrained(model_id) |
326 |
| - table_querier = pipeline("table-question-answering", model=model, tokenizer=tokenizer) |
327 |
| - |
328 |
| - data = { |
329 |
| - "Repository": ["Transformers", "Datasets", "Tokenizers"], |
330 |
| - "Stars": ["36542", "4512", "3934"], |
331 |
| - "Contributors": ["651", "77", "34"], |
332 |
| - "Programming language": ["Python", "Python", "Rust, Python and NodeJS"], |
333 |
| - } |
334 |
| - queries = [ |
335 |
| - "What repository has the largest number of stars?", |
336 |
| - "Given that the numbers of stars defines if a repository is active, what repository is the most active?", |
337 |
| - "What is the number of repositories?", |
338 |
| - "What is the average number of stars?", |
339 |
| - "What is the total amount of stars?", |
340 |
| - ] |
341 |
| - |
342 |
| - results = table_querier(data, queries) |
343 |
| - |
344 |
| - expected_results = [ |
345 |
| - {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"}, |
346 |
| - {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"}, |
347 |
| - { |
348 |
| - "answer": "COUNT > Transformers, Datasets, Tokenizers", |
349 |
| - "coordinates": [(0, 0), (1, 0), (2, 0)], |
350 |
| - "cells": ["Transformers", "Datasets", "Tokenizers"], |
351 |
| - "aggregator": "COUNT", |
352 |
| - }, |
353 |
| - { |
354 |
| - "answer": "AVERAGE > 36542, 4512, 3934", |
355 |
| - "coordinates": [(0, 1), (1, 1), (2, 1)], |
356 |
| - "cells": ["36542", "4512", "3934"], |
357 |
| - "aggregator": "AVERAGE", |
358 |
| - }, |
359 |
| - { |
360 |
| - "answer": "SUM > 36542, 4512, 3934", |
361 |
| - "coordinates": [(0, 1), (1, 1), (2, 1)], |
362 |
| - "cells": ["36542", "4512", "3934"], |
363 |
| - "aggregator": "SUM", |
364 |
| - }, |
365 |
| - ] |
366 |
| - self.assertListEqual(results, expected_results) |
367 |
| - |
368 | 316 | @slow
|
369 | 317 | @require_torch
|
370 | 318 | def test_integration_sqa_pt(self, torch_dtype="float32"):
|
@@ -395,34 +343,6 @@ def test_integration_sqa_pt(self, torch_dtype="float32"):
|
395 | 343 | def test_integration_sqa_pt_fp16(self):
|
396 | 344 | self.test_integration_sqa_pt(torch_dtype="float16")
|
397 | 345 |
|
398 |
| - @slow |
399 |
| - @require_tensorflow_probability |
400 |
| - @require_pandas |
401 |
| - def test_integration_sqa_tf(self): |
402 |
| - model_id = "google/tapas-base-finetuned-sqa" |
403 |
| - model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id) |
404 |
| - tokenizer = AutoTokenizer.from_pretrained(model_id) |
405 |
| - table_querier = pipeline( |
406 |
| - "table-question-answering", |
407 |
| - model=model, |
408 |
| - tokenizer=tokenizer, |
409 |
| - ) |
410 |
| - data = { |
411 |
| - "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], |
412 |
| - "Age": ["56", "45", "59"], |
413 |
| - "Number of movies": ["87", "53", "69"], |
414 |
| - "Date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"], |
415 |
| - } |
416 |
| - queries = ["How many movies has George Clooney played in?", "How old is he?", "What's his date of birth?"] |
417 |
| - results = table_querier(data, queries, sequential=True) |
418 |
| - |
419 |
| - expected_results = [ |
420 |
| - {"answer": "69", "coordinates": [(2, 2)], "cells": ["69"]}, |
421 |
| - {"answer": "59", "coordinates": [(2, 1)], "cells": ["59"]}, |
422 |
| - {"answer": "28 november 1967", "coordinates": [(2, 3)], "cells": ["28 november 1967"]}, |
423 |
| - ] |
424 |
| - self.assertListEqual(results, expected_results) |
425 |
| - |
426 | 346 | @slow
|
427 | 347 | @require_torch
|
428 | 348 | def test_large_model_pt_tapex(self, torch_dtype="float32"):
|
|
0 commit comments