You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* update oneapi to 2025.2, use deep-learning-essentials to replace base-tool
* update to 2025.2 use deeplearn essi to replace base toolkit
* add missed dll
* add deep learning essentials
* add sycl-ls
---------
Co-authored-by: Zhang Jianyu <[email protected]>
To build in default FP32 *(Slower than FP16 alternative)*, set `--build-arg="GGML_SYCL_F16=OFF"` in the previous command.
153
-
154
155
You can also use the `.devops/llama-server-intel.Dockerfile`, which builds the *"server"* alternative.
155
156
Check the [documentation for Docker](../docker.md) to see the available images.
156
157
@@ -160,7 +161,7 @@ Check the [documentation for Docker](../docker.md) to see the available images.
160
161
# First, find all the DRI cards
161
162
ls -la /dev/dri
162
163
# Then, pick the card that you want to use (here for e.g. /dev/dri/card1).
163
-
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
164
+
docker run -it --rm -v "/path/to/models:/models" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card0:/dev/dri/card0 llama-cpp-sycl -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -c 4096 -s 0
164
165
```
165
166
166
167
*Notes:*
@@ -215,16 +216,32 @@ To target AMD GPUs with SYCL, the ROCm stack must be installed first.
215
216
216
217
2.**Install Intel® oneAPI Base toolkit**
217
218
219
+
SYCL backend depends on:
220
+
- Intel® oneAPI DPC++/C++ compiler/running-time.
221
+
- Intel® oneAPI DPC++/C++ library (oneDPL).
222
+
- Intel® oneAPI Deep Neural Network Library (oneDNN).
223
+
- Intel® oneAPI Math Kernel Library (oneMKL).
224
+
218
225
-**For Intel GPU**
219
226
220
-
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
227
+
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
228
+
229
+
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
230
+
231
+
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
221
232
222
233
Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*.
223
234
224
235
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
225
236
226
237
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
227
238
239
+
|Verified release|
240
+
|-|
241
+
|2025.2.1|
242
+
|2025.1|
243
+
|2024.1|
244
+
228
245
-**Adding support to Nvidia GPUs**
229
246
230
247
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
@@ -255,10 +272,11 @@ sycl-ls
255
272
When targeting an intel GPU, the user should expect one or more devices among the available SYCL devices. Please make sure that at least one GPU is present via `sycl-ls`, for instance `[level_zero:gpu]` in the sample output below:
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
374
+
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/resolve/main/llama-2-7b.Q4_0.gguf?download=true) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
357
375
358
376
##### Check device
359
377
@@ -466,7 +484,17 @@ If you already have a recent version of Microsoft Visual Studio, you can skip th
466
484
467
485
3. Install Intel® oneAPI Base toolkit
468
486
469
-
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
487
+
SYCL backend depends on:
488
+
- Intel® oneAPI DPC++/C++ compiler/running-time.
489
+
- Intel® oneAPI DPC++/C++ library (oneDPL).
490
+
- Intel® oneAPI Deep Neural Network Library (oneDNN).
491
+
- Intel® oneAPI Math Kernel Library (oneMKL).
492
+
493
+
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
494
+
495
+
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
496
+
497
+
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
470
498
471
499
Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*.
0 commit comments