|
| 1 | +# Licensed to the Apache Software Foundation (ASF) under one |
| 2 | +# or more contributor license agreements. See the NOTICE file |
| 3 | +# distributed with this work for additional information |
| 4 | +# regarding copyright ownership. The ASF licenses this file |
| 5 | +# to you under the Apache License, Version 2.0 (the |
| 6 | +# "License"); you may not use this file except in compliance |
| 7 | +# with the License. You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, |
| 12 | +# software distributed under the License is distributed on an |
| 13 | +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 14 | +# KIND, either express or implied. See the License for the |
| 15 | +# specific language governing permissions and limitations |
| 16 | +# under the License. |
| 17 | +""" |
| 18 | +This script is used to benchmark the API overhead of different |
| 19 | +python FFI API calling overhead, through DLPack API. |
| 20 | +
|
| 21 | +Specifically, we would like to understand the overall overhead |
| 22 | +python/C++ API calls. The general goal is to understand the overall |
| 23 | +space and get a sense of what are the possible operations. |
| 24 | +
|
| 25 | +We pick function f(x, y, z) where x, y, z are length 1 tensors. |
| 26 | +The benchmark is running in eager mode so we can see what is possible. |
| 27 | +It is orthogonal to other optimizations. For example cudagraph can |
| 28 | +eliminate these overheads completely. So the goal is to get a sense |
| 29 | +of what is possible under eager mode. |
| 30 | +
|
| 31 | +Summary of some takeaways: |
| 32 | +- numpy.add roughly takes 0.36 us per call, which gives roughly what can |
| 33 | + be done in python env. |
| 34 | +- torch.add on gpu takes about 3.7us per call, giving us an idea of what |
| 35 | + roughly we need to get to in eager mode. |
| 36 | +- |
| 37 | +
|
| 38 | +""" |
| 39 | +import torch |
| 40 | +import numpy as np |
| 41 | +from tvm import ffi as tvm_ffi |
| 42 | +import time |
| 43 | + |
| 44 | + |
| 45 | +def print_speed(name, speed): |
| 46 | + print(f"{name:<40} {speed} sec/call") |
| 47 | + |
| 48 | + |
| 49 | +def print_error(name, error): |
| 50 | + print(f"{name:<40} {error}") |
| 51 | + |
| 52 | + |
| 53 | +def baseline_torch_add(repeat): |
| 54 | + """Run torch.add with one element""" |
| 55 | + |
| 56 | + def run_bench(device): |
| 57 | + x = torch.arange(1, device=device) |
| 58 | + y = torch.arange(1, device=device) |
| 59 | + z = torch.arange(1, device=device) |
| 60 | + |
| 61 | + torch.add(x, y, out=z) |
| 62 | + if device == "cuda": |
| 63 | + torch.cuda.synchronize() |
| 64 | + start = time.time() |
| 65 | + for i in range(repeat): |
| 66 | + torch.add(x, y, out=z) |
| 67 | + # note we deliberately do not use torch.cuda.synchronize() |
| 68 | + # because we want to see the overhead of the FFI call. |
| 69 | + end = time.time() |
| 70 | + print_speed(f"torch.add[{device}]", (end - start) / repeat) |
| 71 | + |
| 72 | + # rough take away: add on cuda roughly takes 3e-6 sec/call |
| 73 | + run_bench("cpu") |
| 74 | + run_bench("cuda") |
| 75 | + |
| 76 | + |
| 77 | +def baseline_numpy_add(repeat): |
| 78 | + """Run numpy.add with one element""" |
| 79 | + x = np.arange(1) |
| 80 | + y = np.arange(1) |
| 81 | + z = np.arange(1) |
| 82 | + |
| 83 | + np.add(x, y, out=z) |
| 84 | + start = time.time() |
| 85 | + for i in range(repeat): |
| 86 | + np.add(x, y, out=z) |
| 87 | + end = time.time() |
| 88 | + speed = (end - start) / repeat |
| 89 | + print_speed("numpy.add", speed) |
| 90 | + |
| 91 | + |
| 92 | +def baseline_cupy_add(repeat): |
| 93 | + """Run cupy.add with one element""" |
| 94 | + try: |
| 95 | + import cupy |
| 96 | + except ImportError: |
| 97 | + # skip if cupy is not installed |
| 98 | + return |
| 99 | + x = cupy.arange(1) |
| 100 | + y = cupy.arange(1) |
| 101 | + z = cupy.arange(1) |
| 102 | + |
| 103 | + cupy.add(x, y, out=z) |
| 104 | + start = time.time() |
| 105 | + for i in range(repeat): |
| 106 | + cupy.add(x, y, out=z) |
| 107 | + end = time.time() |
| 108 | + speed = (end - start) / repeat |
| 109 | + print_speed("cupy.add", speed) |
| 110 | + |
| 111 | + |
| 112 | +def tvm_ffi_nop(repeat): |
| 113 | + """Overhead of tvm FFI python call via calling a NOP. |
| 114 | +
|
| 115 | + testing.nop is defined in c++ and do nothing. |
| 116 | + """ |
| 117 | + nop = tvm_ffi.get_global_func("testing.nop") |
| 118 | + x = tvm_ffi.from_dlpack(torch.arange(1)) |
| 119 | + y = tvm_ffi.from_dlpack(torch.arange(1)) |
| 120 | + z = tvm_ffi.from_dlpack(torch.arange(1)) |
| 121 | + nop(x, y, z) |
| 122 | + start = time.time() |
| 123 | + for i in range(repeat): |
| 124 | + y = tvm_ffi.from_dlpack(x) |
| 125 | + end = time.time() |
| 126 | + print_speed("tvm.ffi.nop", (end - start) / repeat) |
| 127 | + |
| 128 | + |
| 129 | +def bench_ffi_nop_from_dlpack(name, x, y, z, repeat): |
| 130 | + """run dlpack conversion + tvm.ffi.nop |
| 131 | +
|
| 132 | + Measures overhead of running dlpack for each args then invoke |
| 133 | + """ |
| 134 | + nop = tvm_ffi.get_global_func("testing.nop") |
| 135 | + tx = tvm_ffi.from_dlpack(x) |
| 136 | + ty = tvm_ffi.from_dlpack(y) |
| 137 | + tz = tvm_ffi.from_dlpack(z) |
| 138 | + nop(tx, ty, tz) |
| 139 | + |
| 140 | + start = time.time() |
| 141 | + for i in range(repeat): |
| 142 | + tx = tvm_ffi.from_dlpack(x) |
| 143 | + ty = tvm_ffi.from_dlpack(y) |
| 144 | + tz = tvm_ffi.from_dlpack(z) |
| 145 | + nop(tx, ty, tz) |
| 146 | + end = time.time() |
| 147 | + print_speed(name, (end - start) / repeat) |
| 148 | + |
| 149 | + |
| 150 | +def tvm_ffi_nop_from_torch_dlpack(repeat): |
| 151 | + """run dlpack conversion + tvm.ffi.nop |
| 152 | +
|
| 153 | + Measures overhead of running dlpack for each args then invoke |
| 154 | + """ |
| 155 | + x = torch.arange(1) |
| 156 | + y = torch.arange(1) |
| 157 | + z = torch.arange(1) |
| 158 | + bench_ffi_nop_from_dlpack("tvm.ffi.nop+from_dlpack(torch)", x, y, z, repeat) |
| 159 | + |
| 160 | + |
| 161 | +def tvm_ffi_nop_from_numpy_dlpack(repeat): |
| 162 | + """run dlpack conversion + tvm.ffi.nop |
| 163 | +
|
| 164 | + Measures overhead of running dlpack for each args then invoke |
| 165 | + """ |
| 166 | + x = np.arange(1) |
| 167 | + y = np.arange(1) |
| 168 | + z = np.arange(1) |
| 169 | + bench_ffi_nop_from_dlpack("tvm.ffi.nop+from_dlpack(numpy)", x, y, z, repeat) |
| 170 | + |
| 171 | + |
| 172 | +def tvm_ffi_self_dlpack_nop(repeat): |
| 173 | + """run dlpack conversion + tvm.ffi.nop |
| 174 | +
|
| 175 | + Measures overhead of running dlpack for each args then invoke |
| 176 | + """ |
| 177 | + x = tvm_ffi.from_dlpack(torch.arange(1)) |
| 178 | + y = tvm_ffi.from_dlpack(torch.arange(1)) |
| 179 | + z = tvm_ffi.from_dlpack(torch.arange(1)) |
| 180 | + bench_ffi_nop_from_dlpack("tvm.ffi.nop+from_dlpack(tvm)", x, y, z, repeat) |
| 181 | + |
| 182 | + |
| 183 | +def bench_ffi_nop_from_dlpack(name, x, y, z, repeat): |
| 184 | + """run dlpack conversion + tvm.ffi.nop |
| 185 | +
|
| 186 | + Measures overhead of running dlpack for each args then invoke |
| 187 | + """ |
| 188 | + nop = tvm_ffi.get_global_func("testing.nop") |
| 189 | + tx = tvm_ffi.from_dlpack(x) |
| 190 | + ty = tvm_ffi.from_dlpack(y) |
| 191 | + tz = tvm_ffi.from_dlpack(z) |
| 192 | + nop(tx, ty, tz) |
| 193 | + |
| 194 | + start = time.time() |
| 195 | + for i in range(repeat): |
| 196 | + tx = tvm_ffi.from_dlpack(x) |
| 197 | + ty = tvm_ffi.from_dlpack(y) |
| 198 | + tz = tvm_ffi.from_dlpack(z) |
| 199 | + nop(tx, ty, tz) |
| 200 | + end = time.time() |
| 201 | + print_speed(name, (end - start) / repeat) |
| 202 | + |
| 203 | + |
| 204 | +def tvm_ffi_nop_from_torch_utils_to_dlpack(repeat): |
| 205 | + """ |
| 206 | + Measures overhead of running dlpack for each args then invoke |
| 207 | + but uses the legacy torch.utils.dlpack.to_dlpack API |
| 208 | +
|
| 209 | + This helps to measure possible implementation overhead of torch. |
| 210 | + """ |
| 211 | + nop = tvm_ffi.get_global_func("testing.nop") |
| 212 | + x = torch.arange(1) |
| 213 | + y = torch.arange(1) |
| 214 | + z = torch.arange(1) |
| 215 | + |
| 216 | + tx = tvm_ffi.from_dlpack(torch.utils.dlpack.to_dlpack(x)) |
| 217 | + ty = tvm_ffi.from_dlpack(torch.utils.dlpack.to_dlpack(y)) |
| 218 | + tz = tvm_ffi.from_dlpack(torch.utils.dlpack.to_dlpack(z)) |
| 219 | + nop(tx, ty, tz) |
| 220 | + |
| 221 | + start = time.time() |
| 222 | + for i in range(repeat): |
| 223 | + tx = tvm_ffi.from_dlpack(torch.utils.dlpack.to_dlpack(x)) |
| 224 | + ty = tvm_ffi.from_dlpack(torch.utils.dlpack.to_dlpack(y)) |
| 225 | + tz = tvm_ffi.from_dlpack(torch.utils.dlpack.to_dlpack(z)) |
| 226 | + nop(tx, ty, tz) |
| 227 | + end = time.time() |
| 228 | + speed = (end - start) / repeat |
| 229 | + print_speed("tvm.ffi.nop+from_dlpack(torch.utils)", speed) |
| 230 | + |
| 231 | + |
| 232 | +def bench_tvm_ffi_nop_autodlpack(name, x, y, z, repeat): |
| 233 | + """ |
| 234 | + Measures overhead of running dlpack via auto convert by directly |
| 235 | + take torch.Tensor as inputs. |
| 236 | + """ |
| 237 | + nop = tvm_ffi.get_global_func("testing.nop") |
| 238 | + nop(x, y, z) |
| 239 | + start = time.time() |
| 240 | + for i in range(repeat): |
| 241 | + nop(x, y, z) |
| 242 | + end = time.time() |
| 243 | + speed = (end - start) / repeat |
| 244 | + print_speed(name, speed) |
| 245 | + |
| 246 | + |
| 247 | +def tvm_ffi_nop_autodlpack_from_torch(repeat, device="cpu"): |
| 248 | + """ |
| 249 | + Measures overhead of running dlpack via auto convert by directly |
| 250 | + take torch.Tensor as inputs. |
| 251 | + """ |
| 252 | + # use larger to ensure alignment req is met |
| 253 | + x = torch.arange(1, device=device) |
| 254 | + y = torch.arange(1, device=device) |
| 255 | + z = torch.arange(1, device=device) |
| 256 | + bench_tvm_ffi_nop_autodlpack(f"tvm.ffi.nop.autodlpack(torch[{device}])", x, y, z, repeat) |
| 257 | + |
| 258 | + |
| 259 | +def tvm_ffi_nop_autodlpack_from_numpy(repeat): |
| 260 | + """ |
| 261 | + Measures overhead of running dlpack via auto convert by directly |
| 262 | + take numpy.ndarray as inputs. |
| 263 | + """ |
| 264 | + # use larger to ensure alignment req is met |
| 265 | + x = np.arange(256) |
| 266 | + y = np.arange(256) |
| 267 | + z = np.arange(256) |
| 268 | + bench_tvm_ffi_nop_autodlpack("tvm.ffi.nop.autodlpack(numpy)", x, y, z, repeat) |
| 269 | + |
| 270 | + |
| 271 | +def bench_to_dlpack(x, name, repeat): |
| 272 | + x.__dlpack__() |
| 273 | + start = time.time() |
| 274 | + for i in range(repeat): |
| 275 | + x.__dlpack__() |
| 276 | + end = time.time() |
| 277 | + speed = (end - start) / repeat |
| 278 | + print_speed(name, speed) |
| 279 | + |
| 280 | + |
| 281 | +def bench_to_dlpack_versioned(x, name, repeat, max_version=(1, 1)): |
| 282 | + """ |
| 283 | + Measures overhead of running dlpack with latest 1.1. |
| 284 | + """ |
| 285 | + try: |
| 286 | + x.__dlpack__(max_version=max_version) |
| 287 | + start = time.time() |
| 288 | + for i in range(repeat): |
| 289 | + x.__dlpack__(max_version=max_version) |
| 290 | + end = time.time() |
| 291 | + speed = (end - start) / repeat |
| 292 | + print_speed(name, speed) |
| 293 | + except Exception as e: |
| 294 | + print_error(name, e) |
| 295 | + |
| 296 | + |
| 297 | +def bench_torch_utils_to_dlpack(repeat): |
| 298 | + """ |
| 299 | + Measures overhead of running torch.utils.dlpack.to_dlpack |
| 300 | + """ |
| 301 | + x = torch.arange(1) |
| 302 | + torch.utils.dlpack.to_dlpack(x) |
| 303 | + start = time.time() |
| 304 | + for i in range(repeat): |
| 305 | + torch.utils.dlpack.to_dlpack(x) |
| 306 | + end = time.time() |
| 307 | + speed = (end - start) / repeat |
| 308 | + print_speed("torch.utils.dlpack.to_dlpack", speed) |
| 309 | + |
| 310 | + |
| 311 | +def main(): |
| 312 | + repeat = 10000 |
| 313 | + print("-----------------------------") |
| 314 | + print("Benchmark f(x, y, z) overhead") |
| 315 | + print("-----------------------------") |
| 316 | + baseline_numpy_add(repeat) |
| 317 | + baseline_torch_add(repeat) |
| 318 | + baseline_cupy_add(repeat) |
| 319 | + tvm_ffi_nop(repeat) |
| 320 | + tvm_ffi_nop_from_torch_dlpack(repeat) |
| 321 | + tvm_ffi_nop_from_numpy_dlpack(repeat) |
| 322 | + tvm_ffi_self_dlpack_nop(repeat) |
| 323 | + tvm_ffi_nop_from_torch_utils_to_dlpack(repeat) |
| 324 | + tvm_ffi_nop_autodlpack_from_torch(repeat, "cpu") |
| 325 | + tvm_ffi_nop_autodlpack_from_torch(repeat, "cuda") |
| 326 | + tvm_ffi_nop_autodlpack_from_numpy(repeat) |
| 327 | + print("-------------------------------") |
| 328 | + print("Benchmark x.__dlpack__ overhead") |
| 329 | + print("-------------------------------") |
| 330 | + bench_torch_utils_to_dlpack(repeat) |
| 331 | + bench_to_dlpack(torch.arange(1), "torch.__dlpack__", repeat) |
| 332 | + bench_to_dlpack(np.arange(1), "numpy.__dlpack__", repeat) |
| 333 | + bench_to_dlpack(tvm_ffi.from_dlpack(torch.arange(1)), "tvm.__dlpack__", repeat) |
| 334 | + print("---------------------------------------------------") |
| 335 | + print("Benchmark x.__dlpack__(max_version=(1,1)) overhead") |
| 336 | + print("---------------------------------------------------") |
| 337 | + bench_to_dlpack_versioned(torch.arange(1), "torch.__dlpack__(max_version=(1,1))", repeat) |
| 338 | + bench_to_dlpack_versioned(np.arange(1), "numpy.__dlpack__(max_version=(1,1))", repeat) |
| 339 | + bench_to_dlpack_versioned( |
| 340 | + tvm_ffi.from_dlpack(torch.arange(1)), "tvm.__dlpack__(max_version=(1,1))", repeat |
| 341 | + ) |
| 342 | + |
| 343 | + |
| 344 | +if __name__ == "__main__": |
| 345 | + main() |
0 commit comments