You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: CHANGELOG.md
+17Lines changed: 17 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -1,5 +1,22 @@
1
1
# TensorRT OSS Release Changelog
2
2
3
+
## 10.11.0 GA - 2025-5-21
4
+
5
+
Key Features and Updates:
6
+
7
+
- Plugin changes
8
+
- Migrated `IPluginV2`-descendent version 1 of `modulatedDeformConvPlugin`, to version 2, which implements `IPluginV3`.
9
+
- Migrated `IPluginV2`-descendent version 1 of `DisentangledAttention_TRT`, to version 2, which implements `IPluginV3`.
10
+
- Migrated `IPluginV2`-descendent version 1 of `MultiscaleDeformableAttnPlugin_TRT`, to version 2, which implements `IPluginV3`.
11
+
- Note: The newer versions preserve the attributes and I/O of the corresponding older plugin version. The older plugin versions are deprecated and will be removed in a future release.
12
+
- Demo changes
13
+
- demoDiffusion
14
+
- Added support for Stable Diffusion 3.5-medium and 3.5-large pipelines in BF16 and FP16 precisions.
15
+
- Parser changes
16
+
- Added `kENABLE_UINT8_AND_ASYMMETRIC_QUANTIZATION_DLA` parser flag to enable UINT8 asymmetric quantization on engines targeting DLA.
17
+
- Removed restriction that inputs to `RandomNormalLike` and `RandomUniformLike` must be tensors.
18
+
- Clarified limitations of scan outputs for `Loop` nodes.
Copy file name to clipboardExpand all lines: README.md
+9-9Lines changed: 9 additions & 9 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -32,7 +32,7 @@ To build the TensorRT-OSS components, you will first need the following software
32
32
33
33
**TensorRT GA build**
34
34
35
-
- TensorRT v10.10.0.31
35
+
- TensorRT v10.11.0.33
36
36
- Available from direct download links listed below
37
37
38
38
**System Packages**
@@ -86,24 +86,24 @@ To build the TensorRT-OSS components, you will first need the following software
86
86
87
87
Else download and extract the TensorRT GA build from [NVIDIA Developer Zone](https://developer.nvidia.com) with the direct links below:
88
88
89
-
-[TensorRT 10.10.0.31 for CUDA 11.8, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.10.0/tars/TensorRT-10.10.0.31.Linux.x86_64-gnu.cuda-11.8.tar.gz)
90
-
-[TensorRT 10.10.0.31 for CUDA 12.9, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.10.0/tars/TensorRT-10.10.0.31.Linux.x86_64-gnu.cuda-12.9.tar.gz)
91
-
-[TensorRT 10.10.0.31 for CUDA 11.8, Windows x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.10.0/zip/TensorRT-10.10.0.31.Windows.win10.cuda-11.8.zip)
92
-
-[TensorRT 10.10.0.31 for CUDA 12.9, Windows x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.10.0/zip/TensorRT-10.10.0.31.Windows.win10.cuda-12.9.zip)
89
+
-[TensorRT 10.11.0.33 for CUDA 11.8, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.11.0/tars/TensorRT-10.11.0.33.Linux.x86_64-gnu.cuda-11.8.tar.gz)
90
+
-[TensorRT 10.11.0.33 for CUDA 12.9, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.11.0/tars/TensorRT-10.11.0.33.Linux.x86_64-gnu.cuda-12.9.tar.gz)
91
+
-[TensorRT 10.11.0.33 for CUDA 11.8, Windows x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.11.0/zip/TensorRT-10.11.0.33.Windows.win10.cuda-11.8.zip)
92
+
-[TensorRT 10.11.0.33 for CUDA 12.9, Windows x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.11.0/zip/TensorRT-10.11.0.33.Windows.win10.cuda-12.9.zip)
93
93
94
94
**Example: Ubuntu 20.04 on x86-64 with cuda-12.9**
95
95
96
96
```bash
97
97
cd~/Downloads
98
-
tar -xvzf TensorRT-10.10.0.31.Linux.x86_64-gnu.cuda-12.9.tar.gz
99
-
export TRT_LIBPATH=`pwd`/TensorRT-10.10.0.31
98
+
tar -xvzf TensorRT-10.11.0.33.Linux.x86_64-gnu.cuda-12.9.tar.gz
### Generate an image guided by a text prompt using Stable Diffusion 3
202
+
### Generate an image guided by a text prompt using Stable Diffusion 3 and its variants
203
203
204
-
Run the command below to generate an image using Stable Diffusion 3
204
+
Run the command below to generate an image using Stable Diffusion 3 and Stable Diffusion 3.5
205
205
206
206
```bash
207
+
# Stable Diffusion 3
207
208
python3 demo_txt2img_sd3.py "A vibrant street wall covered in colorful graffiti, the centerpiece spells \"SD3 MEDIUM\", in a storm of colors" --version sd3 --hf-token=$HF_TOKEN
209
+
210
+
# Stable Diffusion 3.5-medium
211
+
python3 demo_txt2img_sd35.py "a beautiful photograph of Mt. Fuji during cherry blossom" --version=3.5-medium --denoising-steps=30 --guidance-scale 3.5 --hf-token=$HF_TOKEN
212
+
213
+
# Stable Diffusion 3.5-large
214
+
python3 demo_txt2img_sd35.py "a beautiful photograph of Mt. Fuji during cherry blossom" --version=3.5-large --denoising-steps=30 --guidance-scale 3.5 --hf-token=$HF_TOKEN
208
215
```
209
216
210
217
You can also specify an input image conditioning as shown below
python3 demo_txt2img_sd3.py "dog wearing a sweater and a blue collar" --version sd3 --input-image dog-on-bench.png --hf-token=$HF_TOKEN
216
224
```
217
225
@@ -352,7 +360,7 @@ You can use the `--calibraton-dataset` flag to specify the path, which is set to
352
360
python3 demo_img2img_flux.py "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts." --version="flux.1-dev-depth" --hf-token=$HF_TOKEN --guidance-scale 10 --control-image robot.png --bf16 --denoising-steps 30 --download-onnx-models
353
361
354
362
# FP8 using pre-exported ONNX models
355
-
python3 demo_img2img_flux.py "A robot made of exotic candies" --version="flux.1-dev-depth" --hf-token=$HF_TOKEN --guidance-scale 10 --control-image robot.png --fp8 --denoising-steps 30 --download-onnx-models --build-static-batch
363
+
python3 demo_img2img_flux.py "A robot made of exotic candies" --version="flux.1-dev-depth" --hf-token=$HF_TOKEN --guidance-scale 10 --control-image robot.png --fp8 --denoising-steps 30 --download-onnx-models --build-static-batch --quantization-level 4
356
364
357
365
# FP8 using native ONNX export
358
366
rm -rf onnx/* engine/*&& python3 demo_img2img_flux.py "A robot made of exotic candies" --version="flux.1-dev-depth" --hf-token=$HF_TOKEN --guidance-scale 10 --control-image robot.png --quantization-level 4 --fp8 --denoising-steps 30
@@ -368,13 +376,13 @@ python3 demo_img2img_flux.py "A robot made of exotic candies" --version="flux.1-
368
376
python3 demo_img2img_flux.py "a robot made out of gold" --version="flux.1-dev-canny" --hf-token=$HF_TOKEN --guidance-scale 30 --control-image robot.png --bf16 --denoising-steps 30 --download-onnx-models
369
377
370
378
# FP8 using pre-exported ONNX models
371
-
python3 demo_img2img_flux.py "a robot made out of gold" --version="flux.1-dev-canny" --hf-token=$HF_TOKEN --guidance-scale 30 --control-image robot.png --fp8 --denoising-steps 30 --download-onnx-models --build-static-batch
379
+
python3 demo_img2img_flux.py "a robot made out of gold" --version="flux.1-dev-canny" --hf-token=$HF_TOKEN --guidance-scale 30 --control-image robot.png --fp8 --denoising-steps 30 --download-onnx-models --build-static-batch --quantization-level 4
372
380
373
381
# FP8 using native ONNX export
374
382
rm -rf onnx/* engine/*&& python3 demo_img2img_flux.py "a robot made out of gold" --version="flux.1-dev-canny" --hf-token=$HF_TOKEN --guidance-scale 30 --control-image robot.png --quantization-level 4 --fp8 --denoising-steps 30 --calibration-dataset {custom/dataset/path}
375
383
376
384
# FP4
377
-
python3 demo_img2img_flux.py "a robot made out of gold" --version="flux.1-dev-canny" --hf-token=$HF_TOKEN --guidance-scale 30 --control-image robot.png --fp4 --denoising-steps 30 --download-onnx-models
385
+
python3 demo_img2img_flux.py "a robot made out of gold" --version="flux.1-dev-canny" --hf-token=$HF_TOKEN --guidance-scale 30 --control-image robot.png --fp4 --denoising-steps 30 --download-onnx-models --build-static-batch
"Transformer ONNX model for Quantization level 3 is not available for download. Please export the quantized Transformer model natively with the removal of --download-onnx-models."
0 commit comments